Practice beyond technology when programming and mathematics teaching converge
2024 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]
This thesis examines how computer programming and mathematics teaching converge in the presence of a revised mathematics curriculum for upper secondary education. The focus is on the stratified policy strategies deployed by the institutions; how teachers tactically navigated the tensions and contradictions that arose in their everyday teaching; and how these tactics later consolidated in practice.
The empirical data for the study consists of two iterations of individual interviews with nine mathematics teachers who were already proficient inprogramming at the onset of the reform. The teachers’ unit plans and other programming activities, were used as starting points for in-depth discussions about their professional practices. To gain a comprehensive understanding of the context, the author also examined relevant policy documents, including the mathematics curriculum, official guidelines, and a collection of programming exercises and demonstrations provided by the Agency for Education.
Along with these documents, the official strategies were also informed by the explicit decisions and implicit outcomes surrounding the National Exams. By analyzing teachers’ tactics and policy strategies, the thesis sheds light on the ways in which teachers adapted to the new curriculum and the challenges lenges they faced in integrating programming into their mathematics instruction.
This research aims to contribute to a critical understanding of the complex relationship between curriculum reforms, teacher practices, and the integration of programming in mathematics education. When mathematics teachers started integrating computer programming into their subject, two tactical approaches became evident: dual teaching and interspersed programming. The teacher’s proclivity to implement dual teaching practices or interspersed programming are tactics shaped by and in response to the conditions of the new curriculum and their own preferences and views on student learning. These two tactics disclose different ontological commitments in relation to the strategies dictated by the curriculum and reflect a cardinal distinction between planning mathematics activities with elements of programming and planning programming activities with elements of mathematics. Of relevance for teachers and curriculum designers is the understanding of (a)how the notion of programming and mathematics as separate subjects oversimplifies teachers’ actual integration practices, and (b) how the curricular choices made by policy can shape the teaching tactics adopted by educators.
Gradually, both the surrounding constraints and the reasons behind them evolved, rising new practices. The second iteration of interviews was designed to unveil the consequences of latter curricular constraints and delve into the teachers’ practices as they change over time. Teachers’ initial resolutions, trials and experiments with programming in mathematics are sometimes reinforced by means of perseverance and the teachers’ mature reflectionson their past experiences. Other tactics need to be refined or updated and yet some are discarded. Along this distinction, relevant categories emerged that illustrate the processes behind consolidated practices in the presence of new technologies. Furthermore, the thesis provides a discussion on how this transition is characterized by acceptance of new practices rather than acceptance of new technologies.
Recognizing these aspects can guide educators and curriculum designers towards a better understanding of the complexities and nuances involved in integrating programming into mathematics education. This understanding can inform more effective teaching practices and curriculum development that support meaningful integration and promote students’ learning in mathematics with the help of programming.
Abstract [sv]
Denna avhandling undersöker hur programmering och matematikundervisning förenas i närvaro av en reviderad kursplan för matematik på gymnasiet. Fokus ligger på strategier som myndigheterna införde, hur lärare taktiskt navigerade de spänningar och motsägelser som uppstod i deras undervisning, och hur dessa taktiker senare konsoliderades i praktiken.
Två taktiska tillvägagångssätt blev tydliga när lärare började integrera programmering i matematik: Dual undervisning och sammanvävd programmering. Lärarens användning av duala undervisningsmetoder eller sammanvävd programmering var olika taktiker som formades av och som respons på villkoren i den nya läroplanen samt deras egna preferenser och syn på studenternas lärande. Dessa två taktiker avslöjar olika ontologiska åtaganden i förhållande till de strategier som representeras i styrdokumenten.
Successivt utvecklades de omgivande villkoren och gav upphov till ny undervisningspraxis. En andra omgång av intervjuer avslöjade hur senare reformer och nya insikter förändrade lärarnas praxis över tid. Lärarnas ursprungliga beslut både bekräftas och finslipas med nya erfarenheter och reflektioner. Andra taktiker behöver uppdateras, medan vissa kasseras. Processen mot en etablerad matematikundervisning med programmering ilustreras i relevanta kategorier där det framträder hur förändringen sker via bejakandet av programmering som praxis snarare än teknologi.
Place, publisher, year, edition, pages
Trollhättan: University West , 2024. , p. 199
Series
PhD Thesis: University West ; 61
Keywords [en]
Programming; Mathematics; Curriculum; Strategies, Tactics, Michel de Certeau
Keywords [sv]
Programmering; Matematik; Kursplan; L¨aroplan, Strategier, taktiker, Michel de Certeau
National Category
Educational Sciences Information Systems, Social aspects
Research subject
Work Integrated Learning
Identifiers
URN: urn:nbn:se:hv:diva-21050ISBN: 978-91-89325-64-7 (print)ISBN: 978-91-89325-63-0 (electronic)OAI: oai:DiVA.org:hv-21050DiVA, id: diva2:1818598
Public defence
2024-02-02, F313, Gustava Melins gata, Trollhättan, 11:30 (English)
Opponent
Supervisors
2023-12-202023-12-112025-09-30