12345671 of 34
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Leveraging Supervised Learning for Effective Road Anomaly Detection and Severity Estimation
University West, Department of Engineering Science.
2025 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

See separate file

Place, publisher, year, edition, pages
2025. , p. 48
Keywords [en]
Road Anomaly Detection, Anomaly Severity Estimation, Deep Learning, Segmentation, Object Detection, Regression, Machine Learning
National Category
Robotics and automation
Identifiers
URN: urn:nbn:se:hv:diva-23623Local ID: EXA600OAI: oai:DiVA.org:hv-23623DiVA, id: diva2:1977054
Subject / course
Robotics
Educational program
Master in AI and automation
Supervisors
Examiners
Available from: 2025-06-26 Created: 2025-06-25 Last updated: 2025-06-26Bibliographically approved

Open Access in DiVA

Abstract(27 kB)11 downloads
File information
File name FULLTEXT02.pdfFile size 27 kBChecksum SHA-512
3c4333599bfad6bc7ced040e71af26ab1b04cc2dc0929e685e1491568435e30b6e933a2a36272607efe887be97dce84c1108fd8df962ed0485fa6200ed58c76d
Type fulltextMimetype application/pdf

By organisation
Department of Engineering Science
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar
Total: 11 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 15 hits
12345671 of 34
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf