Ändra sökning
Avgränsa sökresultatet
1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Lindgren, Erik
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Zach, Christopher
    Chalmers University of Technology, Gothenburg (SWE).
    Analysis of industrial X-ray computed tomography data with deep neural networks2021Ingår i: Proceedings Volume 11840, Developments in X-Ray Tomography XIII, SPIE , 2021, Vol. 11840Konferensbidrag (Refereegranskat)
    Abstract [en]

    X-ray computed tomography (XCT) is increasingly utilized industrially at material- and process development as well as in non-destructive quality control; XCT is important to many emerging manufacturing technologies, for example metal additive manufacturing. These trends lead to increased needs of safe automatic or semi-automatic data interpretation, considered an open research question for many critical high value industrial products such as within the aerospace industry. By safe, we mean that the interpretation is not allowed to unawarely or unexpectedly fail; specifically the algorithms must react sensibly to inputs dissimilar to the training data, so called out-of-distribution (OOD) inputs. In this work we explore data interpretation with deep neural networks to address: robust safe data interpretation which includes a confidence estimate with respect to OOD data, an OOD detector; generation of realistic synthetic material aw indications for the material science and nondestructive evaluation community. We have focused on industrial XCT related challenges, addressing difficulties with spatially correlated X-ray quantum noise. Results are reported on training auto-encoders (AE) and generative adversarial networks (GAN), on a publicly available XCT dataset of additively manufactured metal. We demonstrate that adding modeled X-ray noise during training reduces artefacts in the generated imperfection indications as well as improves the OOD detector performance. In addition, we show that the OOD detector can detect real and synthetic OOD data and still model the accepted in-distribution data down to the X-ray noise levels. 

  • 2.
    Lindgren, Erik
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Zach, Christopher
    Department of Electrical Engineering, Chalmers University, Gothenburg (SWE).
    Deep-learning-based out-of distribution data detection in visual inspection images2023Ingår i: Proceedings Of Spie  12489, NDE 4.0, Predictive Maintenance, Communication, and Energy Systems: The Digital Transformation of NDE, 1248909 (25 April 2023) / [ed] Norbert G. Meyendorf; Christopher Niezrecki; Ripi Singh, Spie Digital Library , 2023, Vol. 1248909, s. 1-10Konferensbidrag (Refereegranskat)
    Abstract [en]

    Within quality critical industries, e.g. aerospace, quality control with non-destructive evaluation (NDE) is essential. The surface quality is often important and e.g. visual inspection is often applied. Part of the inspection is the data interpretation, not easily made automatic for critical products. Recent studies on the automatization have indicated promising results utilizing deep-learning-based artificial intelligence. However, many such algorithms are known to be overconfident when subjected to unexpected input (e.g. new/rare material defects) far from the training dataset, so-called out-of-distribution (OOD) data. We claim that safe computer-based interpretation of NDE data within quality critical applications, must respond sensible also to OOD data.

    A sensible response could be that the algorithms identify such OOD data and forward it to a human for further analysis. Such an OOD detector could facilitate a human-machine collaboration in a NDE 4.0 vision. In this work we have explored if a recently proposed (for industrial x-ray images) auto-encoder-based approach can be utilized as OOD detector (one-class classifier) for visual inspection data. The model is trained in an unsupervised manner on accepted input to reconstruct it at high precision. Simultaneously it is trained to remove synthetically added defect indications to generate a clean image patch, similar to denoising-auto-enoders. The difference between the input and reconstructed input is analyzed for OOD detection. We train and test the algorithm on a publicly available visual inspection dataset with surface defects. We achieve true positive rates at 0.90 with true negative rates at 0.99 and demonstrate detection of OOD data.

  • 3.
    Lindgren, Erik
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Zach, Christopher
    Department of Electrical Engineering, Chalmers University, Göteborg (SWE).
    Industrial X-ray Image Analysis with Deep Neural Networks Robust to Unexpected Input Data2022Ingår i: Metals, E-ISSN 2075-4701, Vol. 12, nr 11, s. 1963-1963Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    X-ray inspection is often an essential part of quality control within quality critical manufacturing industries. Within such industries, X-ray image interpretation is resource intensive and typically conducted by humans. An increased level of automatization would be preferable, and recent advances in artificial intelligence (e.g., deep learning) have been proposed as solutions. However, typically, such solutions are over confident when subjected to new data far from the training data, so-called out-of-distribution (OOD) data; we claim that safe automatic interpretation of industrial X-ray images, as part of quality control of critical products, requires a robust confidence estimation with respect to OOD data. We explored if such a confidence estimation, an OOD detector, can be achieved by explicit modeling of the training data distribution, and the accepted images. For this, we derived an auto encoder model trained unsupervised on a public dataset with X-ray images of metal fusion welds and synthetic data. We explicitly demonstrate the dangers with a conventional supervised learning-based approach and compare it to the OOD detector. We achieve true positiverates of around 90% at false positive rates of around 0.1% on samples similar to the training data and correctly detect some example OOD data.

    Ladda ner fulltext (pdf)
    fulltext
  • 4. Sahl, Mikael
    et al.
    Broddegård, Mattias
    Siemens Energy AB, Finspång (SWE).
    Lindgren, Erik
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik.
    Wirdelius, Håkan
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik.
    Ultrasonic Signal Response from Internal Manufactured Defects in PBF-LB Manufactured Superalloys2024Ingår i: Sustainable Production through Advanced Manufacturing, Intelligent Automation and Work Integrated Learning: Proceedings of the 11th Swedish Production Symposium (SPS2024), IOS Press , 2024, s. 135-147Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    In the emerging field of Additive Manufacturing (AM), the promise of unparalleled design flexibility, resource efficiency, and rapid prototyping has captivated both industry and academia. While AM techniques offer a wide range of manufacturing possibilities, they also present unique challenges in ensuring structural integrity and material properties. Non-Destructive Testing (NDT) methods, including Ultrasonic Testing (UT), have emerged as invaluable tools for evaluating the internal structure of AM components without compromising their integrity. By employing NDT techniques, it is possible to detect flaws such as porosities, cracks, and other inhomogeneities early in the manufacturing process, thereby improving reliability, extending the lifespan, and reducing the overall environmental footprint of AM products. While the occurrence of defects from processes such as welding is well-established, documented and standardized with regards to NDT, a knowledge gap exists for defects in the field of AM. Specifically, reference reflectors commonly used in the industry, such as side-drilled holes and flat bottom holes, are well understood when machined into components using traditional (subtractive) means. AM offers more flexibility, e.g., adding closed internal reference reflectors directly from the build-process. Twelve straight blocks were manufactured using Laser Powder Bed Fusion (PBF-LB) with carefully selected artificial defects. All defects were created by CAD (Computer Aided Design) seeding, i.e., introducing voids into the CAD-model. The blocks were inspected using Phased Array Ultrasonic Testing as well as conventional ultrasonic testing. It was shown that the as-built surface of PBF-LB has an adverse impact on the ultrasonic testing signal response, and the detectability of defects was quantified under the different conditions (machined surface compared to as-built). It was shown that the build direction has an impact on the morphology and the UT signal response from internally seeded defects.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Thalavai Pandian, Karthikeyan
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik.
    Lindgren, Erik
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik.
    Roychowdhury, S.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik. GKN Aerospace Engine Systems, Trollhättan (SWE).
    Neikter, Magnus
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik.
    Hansson, Thomas
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik. GKN Aerospace Engine Systems,Trollhättan (SWE).
    Pederson, R.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för maskinteknik.
    Characterization of surface asperities to understand its effect on fatigue life of electron beam powder bed fusion manufactured Ti-6Al-4 V2024Ingår i: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 188, artikel-id 108516Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Surface asperities play a leading role in determining the fatigue life of as-built Ti-6Al-4 V components manufactured by electron beam powder bed fusion (PBF-EB). Several roughness parameters are available to characterize the surface asperities This study focuses on identifying the surface roughness parameter that correlates best with fatigue life. To this end, several fatigue test specimens were manufactured using the PBF-EB process and utilizing different contour melting strategies, thus producing as-built surfaces with varying roughness. The focus variation microscopy technique was employed to obtain surface roughness parameters for the as-built surfaces. Selected specimens were characterized using x-ray computed tomography (XCT). Tomography can detect surface-connected features obscured by other parts of the surface that are not visible through optical microscopy. The fatigue life of all specimens was determined using four-point bend testing. Through regression model analysis, maximum pit height (Sv) was identified as the statistically significant roughness parameter with the best fit affecting fatigue life. The fracture zone was closely inspected based on the data collected through XCT prior to fatigue tests. This led to another estimate of the worst-case value for the statistically significant roughness parameter Sv. The Sv parameter values obtained from optical microscopy and XCT were used as the initial crack size in a crack growth model to predict fatigue life. It is observed that life estimates based solely on optical measurements of Sv can be overly optimistic, a situation that must be avoided in predictive design calculations.

    Ladda ner fulltext (pdf)
    fulltext
1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf