Change search
Refine search result
12 51 - 79 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Karimi Neghlani, Paria
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Schnur, Christopher
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Sadeghi, Esmaeil
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Contour design to improve topographical and microstructural characteristics of Alloy 718 manufactured by electron beam-powder bed fusion technique2020In: Additive Manufacturing, ISSN 2214-8604, Vol. 32, article id 101014Article in journal (Refereed)
    Abstract [en]

    Additive manufacturing (AM) processes are being frequently used in industry as they allow the manufacture ofcomplex parts with reduced lead times. Electron beam-powder bed fusion (EB-PBF) as an AM technology isknown for its near-net-shape production capacity with low residual stress. However, the surface quality andgeometrical accuracy of the manufactured parts are major obstacles for the wider industrial adoption of thistechnology, especially when enhanced mechanical performance is taken into consideration. Identifying theorigins of surface features such as satellite particles and sharp valleys on the parts manufactured by EB-PBF isimportant for a better understanding of the process and its capability. Moreover, understanding the influence ofthe contour melting strategy, by altering process parameters, on the surface roughness of the parts and thenumber of near-surface defects is highly critical. In this study, processing parameters of the EB-PBF techniquesuch as scanning speed, beam current, focus offset, and number of contours (one or two) with the linear meltingstrategy were investigated. A sample manufactured using Arcam-recommended process parameters (threecontours with the spot melting strategy) was used as a reference. For the samples with one contour, the scanningspeed had the greatest effect on the arithmetical mean height (Sa), and for the samples with two contours, thebeam current and focus offset had the greatest effect. For the samples with two contours, a lower focus offset andlower scan speed (at a higher beam current) resulted in a lower Sa; however, increasing the scan speed for thesamples with one contour decreased Sa. In general, the samples with two contours provided a lower Sa (∼22 %)but with slightly higher porosity (∼8 %) compared to the samples with one contour. Fewer defects were detected with a lower scanning speed and higher beam current. The number of defects and the Sa value for thesamples with two contours manufactured using the linear melting strategy were ∼85 % and 16 %, respectively,lower than those of the reference samples manufactured using the spot melting strategy.

  • 52.
    Lindgren, Lars-Erik
    et al.
    Luleå University of Technology, Luleå, Sweden.
    Lundbäck, Andreas
    Luleå University of Technology, Luleå, Sweden.
    Fisk, Martin
    Malmö University, Malmö, Sweden,.
    Pederson, Robert
    GKN Aerospace Engine Systems, Trollhättan, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Simulation of additive manufacturing using coupled constitutive and microstructure models2016In: Additive manufacturing, ISSN 2214-8604, Vol. 12, no Part B, p. 144-158Article in journal (Refereed)
    Abstract [en]

    The paper describes the application of modeling approaches used in Computational Welding Mechanics (CWM) applicable for simulating Additive Manufacturing (AM). It focuses on the approximation of the behavior in the process zone and the behavior of the solid material, particularly in the context of changing microstructure. Two examples are shown, one for the precipitation hardening Alloy 718 and one for Ti-6Al-4V. The latter alloy is subject to phase changes due to the thermal cycling

  • 53. Lindgren, L-E.
    et al.
    Lundbäck, A.
    Fisk, M.
    Pedersen, R.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Industrial application of computational welding mechanics2015Conference paper (Refereed)
  • 54.
    Manitsas, Dimosthenis
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Hot Cracking Mechanisms in Welding Metallurgy: A Review of Theoretical Approaches2018In: MATEC Web of conferences, E-ISSN 2261-236X, Vol. 188, article id 03018Article in journal (Refereed)
    Abstract [en]

    Hot cracking often refers to the appearance of liquid films along grain boundaries or to another place in the weld metal structure. Despite hot cracking importance in alloy weldability, there is limited understanding of the influencing mechanisms. Theories and criteria worked out over the years to assess alloy weldability will be presented. The review focuses on: 1) Theories of hot cracking, 2) Hot cracking criteria, and 3) A criticism of hot cracking theories and criteria.

  • 55.
    Matysiak, Hubert
    et al.
    Warsaw University of Technology, Functional Materials Research Center.
    Zagorska, Malgorzata
    Warsaw University of Technology, Faculty of Materials Science and Engineering.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Balkowiec, Alicja
    Warsaw University of Technology, Faculty of Materials Science and Engineering.
    Cygan, Rafal
    Wytwornia Sprzetu Komunikacyjnego, "Polskie Zaklady Lotnicze Rzeszow".
    Rasinski, Marcin
    Warsaw University of Technology, Faculty of Materials Science and Engineering.
    Pisarek, Marcin
    Polish Academy of Sciences, Institute of Physical Chemistry.
    Andrzejczuk, Mariusz
    Warsaw University of Technology, Faculty of Materials Science and Engineering.
    Kubiak, Krzysztof
    Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics.
    Kurzydlowski, Krzysztof J.
    Warsaw University of Technology, Faculty of Materials Science and Engineering.
    Microstructure of Haynes® 282® Superalloy after Vacuum Induction Melting and Investment Casting of Thin-Walled Components2013In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 6, no 11, p. 5016-5037Article in journal (Refereed)
    Abstract [en]

    The aim of this work was to characterize the microstructure of the as-cast Haynes® 282® alloy. Observations and analyses were carried out using techniques such as X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray spectroscopy (EDS), wave length dispersive X-ray spectroscopy (WDS), auger electron spectroscopy (AES) and electron energy-loss spectrometry (EELS). The phases identified in the as-cast alloy include: γ (gamma matrix), γʹ (matrix strengthening phase), (TiMoCr)C (primary carbide), TiN (primary nitride), σ (sigma-TCP phase), (TiMo)2SC (carbosulphide) and a lamellar constituent consisting of molybdenum and chromium rich secondary carbide phase together with γ phase. Within the dendrites the γʹ appears mostly in the form of spherical, nanometric precipitates (74 nm), while coarser (113 nm) cubic γʹ precipitates are present in the interdendritic areas. Volume fraction content of the γʹ precipitates in the dendrites and interdendritic areas are 9.6% and 8.5%, respectively. Primary nitrides metallic nitrides (MN), are homogeneously dispersed in the as-cast microstructure, while primary carbides metallic carbides (MC), preferentially precipitate in interdendritic areas. Such preference is also observed in the case of globular σ phase. Lamellar constituents characterized as secondary carbides/γ phases were together with (TiMo)2SC phase always observed adjacent to σ phase precipitates. Crystallographic relations were established in-between the MC, σ, secondary carbides and γ/γʹ matrix.

  • 56.
    Ott, Eric
    et al.
    General Electric, Cincinnati, USA.
    Liu, XingboWest Virginia University, Morgantown, USA.Andersson, JoelUniversity West, Department of Engineering Science, Division of Welding Technology.BI, ZhongnanChina Iron and Steel Research Institute, Beijing, China.Bockenstedt, KevinATI Specialty Materials, Monroe, USA.Dempster, IanWyman Gordon Forgings Inc., Houston, USA.Groh, JonGeneral Electric, Cincinnati, USA.Heck, KarlCarpenter Technology, Philadelphia, USA.Jablonski, PaulUnited States Department of Energy, Albany, USA.Kaplan, MaxPratt & Whitney, East Hartford, USA.Nagahama, DaisukeHonda Motor Co. Ltd.SaitamaJapan.Sudbrack, ChantalQuesTek Innovations, Evanston, USA.
    Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications2018Conference proceedings (editor) (Other academic)
    Abstract [en]

    This technical meeting will focus on Alloy 718 and Superalloys in this class relative to alloy and process development, production, product applications, trends and the development of advanced modeling tools. The symposium provides an opportunity for authors to present technical advancements relative to a broad spectrum of areas while assessing their impact on related fields associated with this critical alloy group. There are continuing innovations relative to these alloys as well as novel processing techniques which continue to extend applications in very challenging environments ranging from corrosion resistance in the deep sea to high-stressed space applications.

  • 57.
    Raza, Tahira
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, L. E.
    University West, Department of Engineering Science, Division of Welding Technology.
    A review of the effect of selective laser melting process parameters and its influence on microstructure, defects and strength in the iron-nickel based superalloy Alloy 7182016In: The 7th International Swedish Production Symposium, SPS16, Conference Proceedings: 25th – 27th of October 2016, Lund: Swedish Production Academy , 2016, p. 1-8Conference paper (Refereed)
    Abstract [en]

    This review presents a basic insight into the powder-bed fusion process selective laser melting (SLM), with focus on the microstructure and mechanical properties of the iron-nickel based superalloy Alloy 718. The microstructures and mechanical properties of SLM components are highly affected by the process parameters. Laser power, scanning speed, powder layer thickness and hatch distance, are the primary process parameters which can be adjusted in order to influence the microstructure and minimize potential defects. SLM-manufactured Alloy 718 generally produce a columnar microstructure which is a result of epitaxial formation and dendritic grain growth in the build direction (perpendicular to the substrate). Gas porosity, lack of fusion and residual stresses are process induced problems observed in SLM-manufactured Alloy 718. The microstructure of the as-manufactured Alloy 718 is susceptible to microsegregation of Nb and Mo as well as to subsequent non-equilibrium phase transformation. A post-process heat treatment of as-manufactured Alloy 718 is required in order to improve general mechanical properties and to relieve the residual stresses. The tensile strength, yield strength and hardness of heat treated SLM-manufactured Alloy 718 are comparable to that of wrought material.

  • 58.
    Raza, Tahira
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Microstructure of Selective Laser Melted Alloy 718 in As-Manufactured and Post Heat Treated Condition2018In: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 25, p. 450-458Article in journal (Refereed)
    Abstract [en]

    Manufacturing of Alloy 718 with selective laser melting (SLM) process faces several challenges. One of the challenges is the process-induced porosities in as-manufactured SLM parts. Another challenge is the microstructure of Alloy 718 that contains a high amount of segregating elements, such as MC-type carbides and γ/Laves phase eutectics in interdendritic regions. The microstructural heterogeneity in the as-manufactured SLM part unavoidably leads to mechanical heterogeneity and hence, post-processing heat treatments become necessary to achieve a homogeneous microstructure. Therefore, by investigating various post heat treatment options the knowledge on how to decrease/eliminate these segregations will be developed. © 2018 Elsevier B.V. All rights reserved.

  • 59.
    Raza, Tahira
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Varestraint testing of selective laser additive manufactured alloy 718: influence of grain orientation2019In: Metals, E-ISSN 2075-4701, Vol. 9, no 10, article id 1113Article in journal (Refereed)
    Abstract [en]

    The effect of grain orientation on hot cracking susceptibility of selective laser additive manufactured Alloy 718 was investigated by Varestraint testing. Electron backscattered diffraction showed that cracks in heat affected zone (HAZ) of the welded samples occurred in high angle grain boundaries. The extent of HAZ cracking was smaller in samples tested parallel to the elongated grain orientation and larger in samples transverse to the elongated grain orientation. However, for solidification cracking in the weld metal, no significant difference with respect to grain orientation in the base metal was found. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

    Download full text (pdf)
    fulltext
  • 60.
    Raza, Tahira
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Varestraint weldability testing of additive manufactured alloy 7182018In: Science and technology of welding and joining, ISSN 1362-1718, E-ISSN 1743-2936, Vol. 23, no 7, p. 606-611Article in journal (Refereed)
    Abstract [en]

    The weldability in terms of susceptibility towards hot cracking of selective laser melted (SLM) Alloy 718 was investigated and wrought Alloy 718 was used as reference material. Varestraint testing was carried out by means of investigating the weldability in three conditions; (1) SLM as-built, (2) hot isostatic pressing at 1160°C at 105MPa for 3h and (3) wrought Alloy 718 in the mill-annealed condition. The material exhibited intergranular cracking in all three conditions; however,theSLMHIPedconditionhadanincreasedmagnitudeofcracksusceptibilityatallstrain levels.TheincreasedsensitivityoftheHIPedmaterialwasduetothesignificantlylargergrainsize incomparison.TheSLMas-builtconditionshowedthesamedegreeofcrackingasthewrought material.

  • 61.
    Raza, Tahira
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Welding Technology.
    Asala, Gbenga
    University of Manitoba, Department of Mechanical Engineering, Winnipeg, MB R3T 5V6, Canada.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Ojo, Olanrewaju Akanbi
    University of Manitoba, Department of Mechanical Engineering, Winnipeg, MB R3T 5V6, Canada.
    Influence of Heat Treatments on Heat Affected Zone Cracking of Gas Tungsten Arc Welded Additive Manufactured Alloy 7182019In: Metals, E-ISSN 2075-4701, Vol. 9, no 8, article id 881Article in journal (Refereed)
    Abstract [en]

    The weldability of additive manufactured Alloy 718 was investigated in various heat-treated conditions. The microstructure of the base metal was examined in detail in order to understand the effect of different pre-weld heat treatments; i.e., solution, solution and aging, and hot isostatic pressing. After welding, the variation in total crack lengths, maximum crack length and the total number of cracks in the heat affected zone (HAZ) were used as criteria for the cracking susceptibility of each material condition where wrought Alloy 718 was used as the reference material. Selective laser melting (SLM) manufactured Alloy 718 was susceptible to HAZ cracking in all material conditions. Total crack lengths in HAZ were highest in the SLM as-built condition and lowest in the SLM hot isostatic pressed condition. The cracks that were found in the HAZ of the welded materials consisted of liquation cracks, with eutectic product surrounding the cracks, as well as cracks from which liquation products were absent.

    Download full text (pdf)
    fulltext
  • 62.
    Sadeghi, Esmaeil
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Karimi Neghlani, Paria
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Momeni, Soroush
    Friedrich-Alexander University Erlangen-Nurnberg, Department of Materials Science and Engineering, Erlangen, 91058, Germany.
    Seifi, Mohsen
    Case Western Reserves University, Department of Materials Science & Engineering, Cleveland, 44106,USA; ASTM International, Washington, DC 20036, United States .
    Eklund, Anders
    Quintus Technologies AB, Västerås, 721 66, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Influence of thermal post treatments on microstructure and oxidation behavior of EB-PBF manufactured Alloy 7182019In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 150, p. 236-251Article in journal (Refereed)
    Abstract [en]

    The effect of thermal post treatments consisting of heat treatment (HT), hot isostatic pressing (HIP), and combined HIP-HT on microstructure and oxidation behavior of Alloy 718 manufactured by electron beam powder bed fusion (EB-PBF) technique was investigated. Oxidation of the as-built and post-treated specimens was performed in ambient air at 650, 750, and 850 °C for up to 168 h. Directional columnar-grained microstructure, pores and fine Nb-rich carbides were observed in the as-built specimen. The HT specimen presented the columnar microstructure, plate-like δ phase at grain boundaries, and pores. The dominant grain crystallographic orientation was changed from 〈001〉 in the as-built specimen to 〈101〉 after HT. No grain boundary δ phase was observed in the HIPed specimen, but recrystallization occurred in both the HIP and HIP-HT specimens due to a rapid cooling after HIPing motivating the nucleation of fine grains with limited time to grow. After oxidation exposure at 650 and 750 °C for 168 h, no big difference between weight changes of the as-built and post-treated specimens was noted, whereas at 850 °C, the combined HIP-HT specimen showed the most promising corrosion resistance with the least weight change. At 850 °C, a protective scale of Cr 2 O 3 rich in Cr, Ti, and Ni as well as an internal oxide (branched structure of alumina) developed in all the specimens, while, only a protective Cr 2 O 3 scale was found at 650 and 750 °C. The HIP-HT specimen at 850 °C developed an oxide scale, which was denser and more adherent in comparison to the oxide scales formed on the other three specimens, associated with its limited defect distribution and more homogenized microstructure. Moreover, the δ phase formed close to the surface of the exposed specimens during the oxidation exposure at 850 °C most probably led to nucleation and growth of the oxide scale. © 2019 Elsevier Inc.

  • 63.
    Sadeghimeresht, Esmaeil
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Karimi Neghlani, Paria
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Zhang, Pimin
    Linköping University,Department of Management and Engineering, Linköping, Sweden.
    Peng, Ru
    Linköping University,Department of Management and Engineering, Linköping, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Pejryd, Lars
    Örebro University, School of Science and Technology, Örebro, Sweden.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Isothermal Oxidation Behavior of EBM-Additive Manufactured Alloy 7182018In: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications / [ed] Ott, E., Liu, X., Andersson, J., Bi, Z., Bockenstedt, K., Dempster, I., Groh, J., Heck, K., Jablonski, P., Kaplan, M., Nagahama, D. and Sudbrack, C., Springer, 2018, p. 219-240Conference paper (Refereed)
    Abstract [en]

    Oxidation of Alloy 718 manufactured by electron beam melting (EBM) process has been undertaken in ambient air at 650, 700, and 800 °C for up to 168 h. At 800 °C, a continuous external chromia oxide enriched in (Cr, Ti, Mn, Ni) and an internal oxide that was branched structure of alumina formed, whereas at 650 and 700 °C, a continuous, thin and protective chromia layer was detected. The oxidation kinetics of the exposed EBM Alloy 718 followed the parabolic rate law with an effective activation energy of ~248 ± 22 kJ/mol in good agreement with values in the literature for conventionally processed chromia-forming Ni-based superalloys. The oxide scale formed on the surface perpendicular to the build direction was slightly thicker, and more adherent compared to the scale formed on the surface along the build direction, attributed to the varied grain texture in the two directions of the EBM-manufactured specimens. The increased oxygen diffusion and high Cr depletion found on the surface along the build direction were attributed to the fine grains and formation of vacancies/voids along this grain orientation.

  • 64.
    Segerstark, Andreas
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Production Engineering.
    Economical Viability of Laser Metal Deposition2014In: Proceedings of the 6th International Swedish Production Symposium 2014 / [ed] Stahre, Johan, Johansson, Björn & Björkman, Mats, 2014, p. 1-8Conference paper (Refereed)
    Abstract [en]

    Reports on large economic savings using Additive Manufacturing (AM) has been found in literature when exploiting the positive capabilities of AM. This paper evaluates the economic potential of, the AM method, laser metal deposition (LMD) in production of add-on features compared to conventional manufacturing methods. This is done by theoretical case studies, which explore factors critical to the cost of manufacturing a jet engine flange. LMD has the potential to be an economical viable alternative to conventional manufacturing methods when the manufactured component has a high buy-to-fly ratio, the component is small and complex, if the operator time can be kept to a minimum, and/or when the design freedom of LMD can be capitalized into lighter and more efficient components.

  • 65.
    Segerstark, Andreas
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Evaluation of a temperature measurement method developed for laser metal deposition2017In: Science and technology of welding and joining, ISSN 1362-1718, E-ISSN 1743-2936, Vol. 22, no 1, p. 1-6Article in journal (Refereed)
    Abstract [en]

    Measuring temperatures in the material during laser metal deposition (LMD) has an inherent challenge caused by the laser. When thermocouples are radiated by the high intensity laser light overheating occurs which causes the thermocouple to fail. Another identified difficulty is that when the laser passes a thermocouple, emitted light heats the thermocouple to a higher temperature than the material actually experience. In order to cope with these challenges, a method of measuring temperatures during LMD of materials using protective sheets has been developed and evaluated as presented in this paper. The method has substantially decreased the risk of destroying the thermocouple wires during laser deposition. Measurements using 10 mm2 and 100 mm2 protective sheets have been compared. These measurements show small variations in the cooling time (∼0.1 s from 850°C to 500°C) between the small and large protective sheets which indicate a negligible effect on the temperature measurement. © 2016 Institute of Materials, Minerals and Mining.

  • 66.
    Segerstark, Andreas
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Evaluation of the effect of process parameters on microstructural characteristics in laser metal deposition of Alloy 7182015In: Journal of optics and laser technologyArticle in journal (Refereed)
  • 67.
    Segerstark, Andreas
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Influence of Heat Input on Grain Structure in Thin-Wall Deposits using Laser Metal Powder Deposition2016In: The 7th International Swedish Production Symposium, SPS16, Conference Proceedings: 25th – 27th of October 2016, Lund: Swedish Production Academy , 2016, p. -7Conference paper (Refereed)
    Abstract [en]

    Laser metal deposition (LMD) is an additive manufacturing method which is used to deposit material directly onto a metal surface layer upon layer until a final component is achieved. The material used in this study is the nickel iron based superalloy Alloy 718. There is a strong thermal gradient associated with this method which generally produces columnar grains growing in the build-up direction. The preferred solidification orientation of the FCC matrix is in the (001) direction which makes it possible to build directionally solidified structures with epitaxial grains growing through the layers. In this study LMD with powder as additive has been used to build thin walled samples, multiple layers high. The main objectives of this research are to assess the influence of the heat input on the grain structure in LMD builds and evaluate how the morphology and texture of the grains are affected by the changes in process parameters. Two different parameter sets are compared where a high and a low heat input have been used. The two samples with different heat inputs have been evaluated using a scanning electron microscope coupled to an electron back scatter diffraction detector in order to obtain quantitative grains size measurements as well as crystallographic information. It was shown that the grain structure was considerably affected by the heat input where the high heat input produced a strong texture with columnar grains growing in the build-up direction. With a low heat input the grains became finer and, although elongated, the grains became more equiaxed.

  • 68.
    Segerstark, Andreas
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Investigation of laser metal deposited Alloy 718 onto an EN 1.4401 stainless steel substrate2017In: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 97, no Supplement C, p. 144-153Article in journal (Refereed)
    Abstract [en]

    This paper focuses on how process parameters affect the deposition of Alloy 718 onto an EN 1.4401 stainless steel substrate in terms of secondary phase formation, dilution and hardness. A columnar solidification structure with elongated grains growing in the direction normal to the substrate was observed for all parameters. In the interdendritic regions, phases with a high content of Niobium were identified. Scanning Electron Microscopy imaging and Energy Dispersive Spectroscopy measurements revealed these phases to most likely be Laves phase and Nb-carbides. Temperature measurements indicated no significant aging in the deposits. Considerable enrichment of iron was found in the initially deposited layers due to dilution from the substrate. The increased content of iron seemed to aid in forming constituents rich in niobium which, in turn, influenced the hardness. The highest mean hardness was noted in the sample with the lowest area fraction of Nb-rich constituents.

  • 69.
    Segerstark, Andreas
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Review of Laser Deposited Superalloys Using Powder as an Additive2014In: 8th International Symposium on Superalloy 718 and Derivatives: Conference Proceedings / [ed] Ott, E., Banik, A., Andersson, J., Dempster, I., Gabb, T., Groh, J., Heck, K., Helmink, R., Liu, X. & Wusatowska-Sarnek, A, John Wiley & Sons, 2014, p. 393-408Conference paper (Refereed)
  • 70.
    Segerstark, Andreas
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Ojo, Olanrewaju
    University of Manitoba, Department of Mechanical Engineering,Winnipeg, R3T 5V6, Canada.
    Effect of Process Parameters on the Crack Formation in Laser Metal Powder Deposition of Alloy 7182018In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 49A, no 10, p. 5042-5050Article in journal (Refereed)
    Abstract [en]

    Cracking in Alloy 718 using laser metal powder deposition has been evaluated in this study. It is found that the material is susceptible to cracking when the laser power is high, the scanning speed is high and the powder feeding rate is low. Almost all the cracks are located close to the center of the deposited wall and propagates in the normal direction to the substrate. Evidence of liquation are found at the cracked surfaces and since all cracks reside in regions which are reheated several times, the cracks are determined to mostlikely be heat affected zone liquation cracks. The influence of respective process parameter was evaluated using a design of experiment approach. It is shown that, when the powder feeding rate is incorporated as avariable, the heat input is not a suitable indicator for the hot cracking susceptibility in laser metal powder deposition of Alloy 718. A combinatory model using the power ratio together with the heat input is therefore proposed.

    Download full text (pdf)
    fulltext
  • 71.
    Segerstark, Andreas
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Ojo, Olanrewaju
    University of Manitoba,Department of Mechanical Engineering, Winnipeg, R3T 5V6, Canada.
    Microstructural Characterization of Laser Metal Powder Deposited Alloy 7182018In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 142, p. 550-559Article in journal (Refereed)
    Abstract [en]

    A microstructural study of Laser Metal Powder Deposition (LMPD) of Alloy 718, using a low (40 J/mm) and high (100 J/mm) heat inputs (HIs) was performed. The microstructure was characterized in as-deposited condition as well as after a standard heat-treatment, using optical microscope (OM), scanning electron microscope (SEM) and Transmission Electron Microscope (TEM). Laves, MC-carbides, γ' and γ'' are observed in the interdendritic areas of both conditions. However, the dendritic core only consists of γ-matrix. The high HI condition shows a slightly larger Primary Dendrite Arm Spacing (PDAS) as compared to the low HI condition. Additionally, the particle size of the Nb-rich constituents in the interdendriticregions (Laves-phase and Niobium carbide) are larger in the high HI sample. After heat-treatment, the Laves phase dissolves and is replaced by δ-phase in the interdendritic regions, while γ', γ'' and MC-carbideremain in the interdendritic regions. However, the γ'' precipitates seems to be less developed in the dendritic core as compared to the interdendritic regions, especially in the high HI sample. This can be attributed to a heterogeneous distribution of Nb in the microstructure, with a lower Nb content in the dendritic core as compared to close to the interdendritic regions.

  • 72.
    Singh, Sukhdeep
    et al.
    Chalmers University of Technology, Department of Industrial and Materials Science, SE-41296 Gothenburg, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Heat-Affected-Zone Liquation Cracking in Welded Cast Haynes® 282®2019In: Metals, ISSN 2075-4701, Vol. 10, no 1, article id 29Article in journal (Refereed)
    Abstract [en]

    Varestraint weldability testing and Gleeble thermomechanical simulation of the newly developed cast form of Haynes® 282® were performed to understand how heat-affected-zone (HAZ) liquation cracking is influenced by different preweld heat treatments. In contrast to common understanding, cracking susceptibility did not improve with a higher degree of homogenization achieved at a higher heat-treatment temperature. Heat treatments with a 4 h dwell time at 1120 °C and 1160 °C exhibited low cracking sensitivity, whereas by increasing the temperature to 1190 °C, the cracking was exacerbated. Nanosecond ion mass spectrometry analysis was done to characterize B segregation at grain boundaries that the 1190 °C heat treatment indicated to be liberated from the dissolution of C–B rich precipitates

    Download full text (pdf)
    fulltext
  • 73.
    Singh, Sukhdeep
    et al.
    Chalmers University of Technology, Department of Industrial and Materials Science, Gothenburg, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Hot cracking in cast alloy 7182018In: Science and technology of welding and joining, ISSN 1362-1718, E-ISSN 1743-2936, Vol. 23, no 7, p. 568-574Article in journal (Refereed)
    Abstract [en]

    Hot cracking susceptibility of the Fe–Ni-based precipitation hardening cast superalloy Alloy 718 was studied by Varestraint weldability testing. The effect of two hot isostatic pressing (HIP) treatments commonly employed in the aerospace industry was investigated in reference to the as cast condition. It was found that the heat affected zone (HAZ) liquation cracking susceptibility increased for samples with pre-weld HIP treatments. The as cast condition disclosed the best response for liquation cracking followed by HIP-1120 (1120°C/4h (HIP) + 1050°C/1h and furnace cooling to 650°C/1h in vacuum + 950°C/1h) and HIP-1190 (1190°C/4h (HIP) + 870°C/10h and furnace cooling to 650°C/1h in vacuum + 950°C/1h). The amount of the secondary precipitates and base metal grain size was found to be important parameters influencing the cracking susceptibility. Regarding solidification cracking susceptibility, the three conditions appear to behave similarly. © 2018 Institute of Materials, Minerals and Mining. Published by Taylor & Francis on behalf of the Institute.

  • 74.
    Singh, Sukhdeep
    et al.
    Chalmers University of Technology, Department of Materials and Manufacturing Technology, Gothenburg, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Review of Hot Cracking Phenomena in Austenitic Stainless Steels2016In: The 7th International Swedish Production Symposium, SPS16, Conference Proceedings: 25th – 27th of October 2016, Lund: Swedish Production Academy , 2016, p. 1-7Conference paper (Refereed)
    Abstract [en]

    Hot cracking is a phenomenon occurring during welding. Hot cracks that form in the fusion zone are named solidification cracking while cracking that takes place in the heat affected zone is referred to as liquation cracking. This paper reviews the hot cracking phenomena specifically of relevance to austenitic stainless steels. The currently existing main theories explaining solidification and liquation cracking are considered together with the influence of main parameters in relation to susceptibility towards hot cracking. Important factors are the base metal microstructure, primary solidification mode, solidification rate, distribution of delta ferrite, amount of nitrogen, level of impurities and minor elements.

  • 75.
    Singh, Sukhdeep
    et al.
    Chalmers University of Technology, Department of Industrial and Materials Science, Gothenburg, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Varestraint weldability testing of cast ATI® 718Plus™: a comparison to cast Alloy 7182019In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 63, no 2, p. 389-399Article in journal (Refereed)
    Abstract [en]

    Varestraint testing of the newly developed cast ATI® 718Plus™ after pseudo-HIP (hot isostatic pressing) heat treatments showed that the extent of solidification cracking was independent of the heat treatment condition. The susceptibility towards heat-affected zone (HAZ) liquation cracking was found to be related to the heat treatment dwell time rather than the temperature. The heat treatments at 1120 and 1190 °C for 24 h were the most susceptible to cracking. On the other hand, heat treatments at 1120, 1160 and 1190 °C for 4-h dwell time exhibited the least amount of cracking. The solidification cracking was found to be similar whereas the HAZ liquation cracking was lower for ATI® 718Plus™ after the heat treatment at 1120 and 1190 °C for 4-h dwell time in comparison to cast Alloy 718.

  • 76.
    Singh, Sukhdeep
    et al.
    Chalmers University of Technology,Department of Industrial and Materials Science, Gothenburg, Sweden.
    Fransson, William
    University West, Department of Engineering Science.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Brederholm, Anssi
    Aalto University School of Engineering, Helsinki, Finland.
    Hänninen, Hannu
    Aalto University School of Engineering, Helsinki, Finland.
    Varestraint Weldability Testing of ATI 718Plus®: Influence of Eta Phase2018In: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications / [ed] Eric Ott, Xingbo Liu, Joel Andersson, Zhongnan Bi, Kevin Bockenstedt, Ian Dempster, Jon Groh, Karl Heck, Paul Jablonski, Max Kaplan, Daisuke Nagahama, Chantal Sudbrack, Springer, 2018, p. 929-937Conference paper (Refereed)
    Abstract [en]

    This study investigates the effect of eta phase on hot cracking susceptibility of ATI 718Plus®. Two heat treatment conditions of 950 °C/1 h and 950 °C/15 h having different amounts of eta phase were tested by longitudinal Varestraint testing method. The heat treatment at 950 °C/15 h exhibited the highest amount of cracking. This was related to the higher amount of eta phase precipitation during the long dwell heat treatment which aided to extensive liquation during welding.

  • 77.
    Singh, Sukhdeep
    et al.
    Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Welding Technology.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Investigation on effect of welding parameters on solidification cracking of austenitic stainless steel 3142018In: Procedia Manufacturing, E-ISSN 2351-9789, p. 351-357Article in journal (Other academic)
    Abstract [en]

    This study investigates the solidification cracking susceptibility of the austenitic stainless steel 314. Longitudinal Varestraint testing was used with three different set of welding test parameters. Weld speed, current and voltage values were selected so that the same heat input resulted in all the test conditions. From the crack measurements it was seen that the test condition with the lowest current and welding speed value also produced the least amount of cracking with very good repeatability.

  • 78. Sjöberg, Göran
    et al.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Sjunnesson, Anders
    New Materials in the Design and Manufacturing of Hot Structures for Aircraft Engines: Allvac 718Plus2009In: XIX International Symposium on Air Breathing Engines 2009: ISABE 2009, Montreal, Canada, 7-11 September, 2009., Reston, VA: American Institute of Aeronautics and Astronautics, 2009, Vol. 3, p. 1406-1415Conference paper (Refereed)
  • 79.
    Sreekanth, Suhas
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Welding Technology.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Ghassemali, Ehsan
    Jönköping University.
    Effect of Direct Energy Deposition Process Parameters on Single-Track Deposits of Alloy 7182020In: Metals, E-ISSN 2075-4701, Vol. 10, no 1, p. 01-16, article id 96Article in journal (Refereed)
    Abstract [en]

    The effect of three important process parameters, namely laser power, scanning speed and laser stand-off distance on the deposit geometry, microstructure and segregation characteristics in direct energy deposited alloy 718 specimens has been studied. Laser power and laser stand-off distance were found to notably affect the width and depth of the deposit, while the scanning speed influenced the deposit height. An increase in specific energy conditions (between 0.5 J/mm2 and 1.0 J/mm2) increased the total area of deposit yielding varied grain morphologies and precipitation behaviors which were comprehensively analyzed. A deposit comprising three distinct zones, namely the top, middle and bottom regions, categorized based on the distinct microstructural features formed on account of variation in local solidification conditions. Nb-rich eutectics preferentially segregated in the top region of the deposit (5.4–9.6% area fraction, Af) which predominantly consisted of an equiaxed grain structure, as compared to the middle (1.5–5.7% Af) and the bottom regions (2.6–4.5% Af), where columnar dendritic morphology was observed. High scan speed was more effective in reducing the area fraction of Nb-rich phases in the top and middle regions of the deposit. The <100> crystallographic direction was observed to be the preferred growth direction of columnar grains while equiaxed grains had a random orientation.

    Download full text (pdf)
    fulltext
12 51 - 79 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf