Change search
Refine search result
1234567 51 - 100 of 723
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Choquet, Isabelle
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Clement, Uta
    Numerical and experimental study of Ni-particle impact on a ti-surfaceIn: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016Article in journal (Refereed)
  • 52.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Choquet, Isabelle
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Numerical and Experimental Study of Ni-Particle Impact On A Ti-Surface2007In: Proceedings of the International Thermal Spray Conference: May 2007, Beijing, China, ASM International , 2007, p. 219-224Conference paper (Refereed)
  • 53.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    On-Line Measurement of Plasma-Sprayed Ni-Particles during Impact on a Ti-Surface: influence of Surface Oxidation2007In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 16, no 4, p. 506-511Article in journal (Refereed)
    Abstract [en]

    The objective of this study was to analyze the impact of plasma-sprayed Ni5%Al particles on polished and grit-blasted Ti6Al4V samples under oxidized and nonoxidized conditions. For this purpose, measurements of thermal radiation and velocity of individual plasma-sprayed particles were carried out. From the thermal radiation at impact, splat diameter during flattening and temperature evolution during cooling were evaluated. Characteristic parameters related to the quality of contact between the splat and the substrate were retrieved. The flattening speed was introduced to characterize wetting, while the cooling rate was used to characterize solidification. The idea was to get a signature of particle impact for a given surface roughness and oxidation state by identifying parameters which strongly affect the splat behavior. Sieved Ni5%Al powder in a narrow range (+65 −75 μm) was sprayed on four sets of titanium alloy surfaces, consisting of polished and grit-blasted samples, one set had a nonoxidized surface and the other one was oxidized in an oven at 600 °C for two hours. Resulting splats after impact were characterized by scanning electron microscopy, the splats on oxidized surface showed pores in their core and detached fingers at the periphery. The cooling rate and flattening degree significantly increased on the oxidized smooth surface compared to the nonoxidized one. This trend was not found in grit-blasted surfaces, which implies that impact phenomena are different on grit-blasted surfaces than on smooth surfaces thus further work is needed.

  • 54.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Wigren, J.
    Volvo Aero, Trollhättan.
    Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating2004In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 13, no 4, p. 508-514Article in journal (Refereed)
  • 55.
    Balachandramurthi, Arun Ramanathan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Fatigue Properties of Additively Manufactured Alloy 7182018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Additive Manufacturing (AM), commonly known as 3D Printing, is a disruptive modern manufacturing process, in which parts are manufactured in a layer-wise fashion. Among the metal AM processes, Powder Bed Fusion (PBF) technology has opened up a design space that was not formerly accessible with conventional manufacturing processes. It is, now, possible to manufacture complex geometries, such as topology-optimized structures, lattice structures and intricate internal channels, with relative ease. PBF is comprised of Electron Beam Melting (EBM) and Selective Laser Melting (SLM) processes.

    Though AM processes offer several advantages, the suitability of these processes to replace conventional manufacturing processes must be studied in detail; for instance, the capability to produce components of consistent quality. Therefore, understanding the relationship between the AM process together with the post treatment used and the resulting microstructure and its influence on the mechanical properties is crucial, to enable manufacturing of high-performance components. In this regard, for AM built Alloy 718, only a limited amount of work has been performed compared to conventional processes such as casting and forging. The aim of this work, therefore, is to understand how the fatigue properties of EBM and SLM built Alloy 718, subjected to different thermal post-treatments, is affected by the microstructure. In addition, the effect of as-built surface roughness is also studied.

    Defects can have a detrimental effect on fatigue life. Numerous factors such as the defect type, size, shape, location, distribution and nature determine the effect of defects on properties. Hot Isostatic Pressing (HIP) improves fatigue life as it leads to closure of most defects. Presence of oxides in the defects, however, hinders complete closure by HIP. Machining the as-built surface improves fatiguelife; however, for EBM manufactured material, the extent of improvement is dependent on the amount of material removed. The as-built surface roughness, which has numerous crack initiation sites, leads to lower scatter in fatigue life. In both SLM and EBM manufactured material, fatigue crack propagation is transgranular. Crack propagation is affected by grain size and texture of the material.

  • 56.
    Balachandramurthi, Arun Ramanathan
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Moverare, Johan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Linköping University, Department of Management and Engineering, Linköping, Sweden.
    Dixit, Nikhil
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Deng, Dunyong
    Linköping University, Department of Management and Engineering, Linköping, Sweden.
    Pederson, Robert
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Microstructural influence on fatigue crack propagation during high cycle fatigue testing of additively manufactured Alloy 7182019In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 149, p. 82-94Article in journal (Refereed)
    Abstract [en]

    A study of the microstructure of additively manufactured Alloy 718 was performed in order to better understand the parameters that have an influence on the fatigue properties of the material. The specimens were manufactured using two powder bed fusion techniques – Electron Beam Melting (EBM) and Selective Laser Melting (SLM). Four point bending fatigue tests were performed at room temperature with a stress ratio of R = 0.1 and 20 Hz frequency, on material that was either in hot isostatically pressed (HIP) and solution treated and aged (STA) condition or in STA condition without a prior HIP treatment. The grains in the SLM material in the HIP + STA condition have grown considerably both in the hatch and the contour regions; EBM material, in contrast, shows grain growth only in the contour region. Fractographic analysis of the specimens in HIP + STA condition showed a faceted appearance while the specimens in STA condition showed a more planar crack appearance. The crack propagation occurred in a transgranular mode and it was found that precipitatessuch as NbC, TiN or δ-phase, when present, did not affect the crack path. The areas with larger grains corresponded to the faceted appearance of the fracture surface. This could be attributed to the plastic zone ahead of the crack tip being confined within one grain, in case of the larger grains, which promotes single shear crack growth mode

  • 57.
    Balachandramurthi, Arun Ramanathan
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Moverare, Johan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Linköping University, Department of Management and Engineering, Linköping, Sweden.
    Dixit, Nikhil
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Pederson, Robert
    University West, Department of Engineering Science, Division of Welding Technology.
    Influence of defects and as-built surface roughness on fatigue properties of additively manufactured Alloy 7182018In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 735, p. 463-474Article in journal (Refereed)
    Abstract [en]

    Electron beam melting (EBM) and Selective Laser Melting (SLM) are powder bed based additive manufacturing (AM) processes. These, relatively new, processes offer advantages such as near net shaping, manufacturing complex geometries with a design space that was previously not accessible with conventional manufacturing processes, part consolidation to reduce number of assemblies, shorter time to market etc. The aerospace and gas turbine industries have shown interest in the EBM and the SLM processes to enable topology-optimized designs, parts with lattice structures and part consolidation. However, to realize such advantages, factors affecting the mechanical properties must be well understood – especially the fatigue properties. In the context of fatigue performance, apart from the effect of different phases in the material, the effect of defects in terms of both the amount and distribution and the effect of “rough” as-built surface must be studied in detail. Fatigue properties of Alloy 718, a Ni-Fe based superalloy widely used in the aerospace engines is investigated in this study. Four point bending fatigue tests have been performed at 20 Hz in room temperature at different stress ranges to compare the performance of the EBM and the SLM material to the wrought material. The experiment aims to assess the differences in fatigue properties between the two powder bed AM processes as well as assess the effect of two post-treatment methods namely – machining and hot isostatic pressing (HIP). Fractography and metallography have been performed to explain the observed properties. Both HIPing and machining improve the fatigue performance; however, a large scatter is observed for machined specimens. Fatigue properties of SLM material approach that of wrought material while in EBM material defects severely affect the fatigue life. © 2018 Elsevier B.V.

  • 58.
    Balachandramurthi, Arun Ramanathan
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Olsson, Jonas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Snis, Anders
    Arcam EBM, SE-431 37, M€olndal, Sweden.
    Moverare, Johan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Department of Management and Engineering, Link€oping University, SE-581 83, Sweden.
    Pederson, Robert
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Microstructure tailoring in Electron Beam Powder Bed Fusion Additive Manufacturing and its potential consequences2019In: Results in Materials, ISSN 2590-048X, Vol. 1Article in journal (Refereed)
    Abstract [en]

    Electron Beam Powder Bed Fusion process for Alloy 718 was investigated, in the sense of microstructural evolution with varying process conditions. The existence of a geometric relationship between the melt front and the processing parameters was observed. By understanding and capitalizing on this relationship, it was possible to obtain columnar, equiaxed or bimodal microstructure.

  • 59.
    Balachandramurthi Ramanathan, Arun
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Moverare, Johan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Linköping University, Department of Management and Engineering, SE 581 83 Linköping, Sweden.
    Mahade, Satyapal
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Pederson, Robert
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Additive Manufacturing of Alloy 718 via Electron Beam Melting: Effect of Post-Treatment on the Microstructure and the Mechanical Properties.2018In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 12, no 1, article id E68Article in journal (Refereed)
    Abstract [en]

    Alloy 718 finds application in gas turbine engine components, such as turbine disks, compressor blades and so forth, due to its excellent mechanical and corrosion properties at elevated temperatures. Electron beam melting (EBM) is a recent addition to the list of additive manufacturing processes and has shown the capability to produce components with unique microstructural features. In this work, Alloy 718 specimens were manufactured using the EBM process with a single batch of virgin plasma atomized powder. One set of as-built specimens was subjected to solution treatment and ageing (STA); another set of as-built specimens was subjected to hot isostatic pressing (HIP), followed by STA (and referred to as HIP+STA). Microstructural analysis of as-built specimens, STA specimens and HIP+STA specimens was carried out using optical microscopy and scanning electron microscopy. Typical columnar microstructure, which is a characteristic of the EBM manufactured alloy, was observed. Hardness evaluation of the as-built, STA and HIP+STA specimens showed that the post-treatments led to an increase in hardness in the range of ~50 HV1. Tensile properties of the three material conditions (as-built, STA and HIP+STA) were evaluated. Post-treatments lead to an increase in the yield strength (YS) and the ultimate tensile strength (UTS). HIP+STA led to improved elongation compared to STA due to the closure of defects but YS and UTS were comparable for the two post-treatment conditions. Fractographic analysis of the tensile tested specimens showed that the closure of shrinkage porosity and the partial healing of lack of fusion (LoF) defects were responsible for improved properties. Fatigue properties were evaluated in both STA and HIP+STA conditions. In addition, three surface conditions were also investigated, namely the 'raw' as-built surface, the machined surface with the contour region and the machined surface without the contour region. Machining off the contour region completely together with HIP+STA led to significant improvement in fatigue performance.

  • 60.
    Bandyopadhyay, Robi
    University West, Department of Technology.
    Modelling of the flame spraying process2003Report (Other (popular science, discussion, etc.))
  • 61. Banerjee, D.
    et al.
    Joshi, Shrikant V.
    Accuracy, Reliability and Reproducibility of Various Mechanical Test Techniques: Preface1996In: Transactions of the Indian Institute of Metals, ISSN 0019-493X, Vol. 49, no 5, p. R1-R2Article in journal (Other academic)
  • 62. Barick, P.
    et al.
    Prasad Saha, B.
    Mitra, R.
    Joshi, Shrikant V.
    Effect of concentration and molecular weight of polyethylenimine on zeta potential, isoelectric point of nanocrystalline silicon carbide in aqueous and ethanol medium2015In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 41, no 3, p. 4289-4293Article in journal (Refereed)
    Abstract [en]

    The effect of dispersant concentration and its molecular weight on zeta potential of nanocrystalline silicon carbide in an aqueous medium was investigated. An increase in the concentration of the dispersant, such as polyethylenimine (PEI), in slurry prepared from nanosized silicon carbide, was found to augment the iso-electric point and zeta potential. However, the zeta potential was observed to decline as the pH of the slurry shifts towards the basic region. This aforementioned behavior is attributed to the enhanced mutual repulsion between the polymer chains of the dispersant adsorbed on the surfaces of SiC particles and those approaching the surfaces. The higher ionization potential of polymers in the acidic region compared to the basic region increases the adsorption. The relationship between zeta potential and pH is however, noted to remain virtually unchanged with molecular weight of PEI. Further, it is observed that zeta potential of SiC decreases with the increase in solid content of the slurry. Rheology study reveals that the ethanol based slurry has a lower viscosity than the water based slurry, making ethanol the preferred dispersing medium for colloidal processing of nanometric SiC powder. © 2014 Elsevier Ltd and Techna Group S.r.l.

  • 63.
    Barick, Prasenjit
    et al.
    International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad, 500005 Telangana, India.
    Chakravarty, Dibyendu
    International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad, 500005 Telangana, India.
    Saha, Bhaskar Prasad
    International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad, 500005 Telangana, India.
    Nitra, Rahul
    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 West Bengal, India.
    Joshi, Shrikant
    University West, Department of Engineering Science, Research Enviroment Production Technology West. International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad, 500005 Telangana, India.
    Effect of pressure and temperature on densification, microstructure and mechanical properties of spark plasma sintered silicon carbide processed with β-silicon carbide nanopowder and sintering additives2016In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 42, no 3, p. 3836-3848Article in journal (Refereed)
    Abstract [en]

    The effects of applied pressure and temperature during spark plasma sintering (SPS) of additive-containing nanocrystalline silicon carbide on its densification, microstructure, and mechanical properties have been investigated. Both relative density and grain size are found to increase with temperature. Furthermore, with increase in pressure at constant temperature, the relative density improves significantly, whereas the grain size decreases. Reasonably high relative density (~96%) is achieved on carrying out SPS at 1300 °C under applied pressure of 75 MPa for 5 min, with a maximum of ~97.7% at 1500 °C under 50 MPa for 5 min. TEM studies have shown the presence of an amorphous phase at grain boundaries and triple points, which confirms the formation of liquid phase during sintering and its significant contribution to densification of SiC at relatively lower temperatures (≤1400 °C). The relative density decreases on raising the SPS temperature beyond 1500 °C, probably due to pores caused by vaporization of the liquid phase. Whereas β-SiC is observed in the microstructures for SPS carried out at temperatures ≤1500 °C, α-SiC evolves and its volume fraction increases with further increase in SPS temperatures. Both hardness and Young׳s modulus increase with increase in relative density, whereas indentation fracture toughness appears to be higher in case of two-phase microstructure containing α and β-SiC.

  • 64.
    Barick, Prasenjit
    et al.
    International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad-500005, Telangana, India.
    Saha, Bhaskar Prasad
    International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad-500005, Telangana, India.
    Joshi, Shrikant
    University West, Department of Engineering Science, Research Enviroment Production Technology West. International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad-500005, Telangana, India.
    Mitra, Rahul
    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
    Spray-freeze-dried nanosized silicon carbide containing granules: Properties, compaction behaviour and sintering2016In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 36, no 16, p. 3863-3877Article in journal (Refereed)
    Abstract [en]

    Spherical granules comprising silicon carbide nanoparticles have been produced with the help of sprayfreeze-drying (SFD) technique. The effect of solid loading of slurries on rheological properties, flowability and morphology of the resulting SFD granules has been studied. Further, a systematic study has been performed to investigate the effect of applied pressures and granule density on the relative densities and microstructures of the green compacts. A marginal increase in viscosity is noted as the solid content of slurries increases from 5 to 15 vol% with significant increase in viscosity being observed in case of 18 vol% slurry. The granules prepared from SiC slurries are spherical in shape with their mean size, density, gravimetric flow rate, and yield strength increasing with the increase in solid content. The mechanical properties of sintered SiC produced from SFD granules are found relatively superior to that made from commercially available spray-dried (SD) granules.

  • 65.
    Battabyal, Manjusha
    et al.
    Chalmers University of Technology.
    Klement, Uta
    Chalmers University of Technology.
    Norell, Mats
    Chalmers University of Technology.
    Goutier, Simon
    University of Limoges.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Comparison of microstructure in Ni-Al single splats and millimeter sized droplets2011In: Surface Modification Technologies XXV : Proceedings of the Twenty Fith International Conference on Surface Modification Technologies - SMT25: Trolhättan June 20-22, 2011, 2011, p. 3-12Conference paper (Refereed)
  • 66.
    Beaubert, Francois
    et al.
    Valenciennes University.
    Pálsson, Halldór
    University of Iceland.
    Lalot, Sylvain
    Valenciennes University.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Bauduin, Hadrian
    Valenciennes University.
    Design of a device to induce swirling flow in pipes: A rational approach2015In: Comptes rendus. Mecanique, ISSN 1631-0721, E-ISSN 1873-7234, Vol. 343, no 1, p. 1-12Article in journal (Refereed)
    Abstract [en]

    In this study, a rational approach is proposed to design a device for inducing swirling flow in heat exchanger pipes, for improved efficiency in the laminar regime. First, 2D computational fluid dynamics results lead to select, among four profiles, the blade profile with the most favorable lift to drag ratio. Then, the fluid flow in the swirler made with the selected blade profile is simulated in 3D, for Reynolds numbers ranging from 50 to 1600. Based on the simulation results, an analytic approximation of the evolution of the tangential fluid velocity is proposed as a function of the Reynolds number.

  • 67.
    Beno, Thomas
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Isaksson, Marina
    Pejryd, Lars
    University West, Department of Engineering Science, Division of Production Engineering.
    Investigation of Machining Greek Ascaloy with Minimal Quantity Lubrication Sustainable/Cleaner Manufacturing2008In: LCE 2008: 15th CIRP International Conference on Life Cycle Engineering: Conference Proceedings, Sidney, 17-19 March, 2008Conference paper (Refereed)
  • 68.
    Beno, Tomas
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Isaksson, Marina
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Pejryd, Lars
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Investigation of Minimal Quantity Cooling Lubrication in Turning of Inconel 7182007In: Proceedings of the 3rd International Conference on Tribology in Manufacturing Processes: ICTMP 2007, Yokohama, Japan 24-26 September, 2007, p. 281-286Conference paper (Other academic)
  • 69. Bharadwaj, Sanjay
    et al.
    Jain, Karuna
    Joshi, Shrikant V.
    A Review of Technology Commercialization Models: Suitability for Indian Research and Technology Organizations (RTOs) in Advanced Materials Sector2012In: International Journal of Business Administration & Management, Vol. 2, no 1, p. 53-60Article in journal (Refereed)
  • 70. Bharadwaj, Sanjay
    et al.
    Padmanabham, G.
    Jain, Karuna
    Momaya, K.
    Joshi, Shrikant V.
    Strategic Alliances for Advanced Materials Technologies' Value Chain: Research and Technology Organisation (RTO)’s Perspective2014In: Proceedings of 2nd International Conference on Management of Intellectual Property Rights and Strategy / [ed] Shishir K Jha & Gouri Gargate (eds.), 2014Conference paper (Refereed)
  • 71. Bhardwaj, Sanjay
    et al.
    Jain, Karuna
    Joshi, Shrikant V.
    Technology Commercialization by Micro, Small and Medium Enterprises (MSMEs) in Indian Context: Challenges and Governmental Support Systems2013In: Indian Journal of Economics and Business, ISSN 0972-5784, Vol. 12Article in journal (Refereed)
    Abstract [en]

    Post-liberalization, level of protection imparted by Indian government to Micro, Small and Medium Enterprises (MSMEs) is gradually reducing. In the changed scenario, MSMEs need to complete with large companies, both Indian and foreign, with cost-competitive and good quality products. Due to limited resources available with MSMEs, they find it difficult to develop internal technologies and hence need to access technologies developed elsewhere. Technologies developed by public funded Research and Technology Organizations (RTOs) can support MSMEs. However, MSMEs should develop competence to commercialize technologies procured from public-funded RTOs, and also utilize available governmental support to meet the emerging challenges. This paper discusses the challenges and governmental support systems for technology commercialization, with relevant examples, from Indian MSMEs’ perspective.

  • 72.
    Bhardwaj, Sanjay
    et al.
    International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India.
    Padmanabham, G.
    International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India.
    Jain, Karuna
    National Institute of Industrial Engineering (NITIE), Mumbai, India.
    Srinivasa Rao, D.
    International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Technology commercialization in advanced materials sector: Indian context2017In: Journal of Intellectual Property Rights, ISSN 0971-7544, E-ISSN 0975-1076, Vol. 22, no 3, p. 154-167Article in journal (Refereed)
    Abstract [en]

    This study is aimed at developing insights into the Technology Value Chain (TVC) of advanced materials-based technologies using a scenario in which technology has been transferred by a Research and Technology Organization (RTO) to a Small and Medium Enterprise (SME) in the Indian context. A Conceptual Theoretical Model (CTM) using constructs from existing TVC models is used as a basis for the case study described in this paper. This model is refined using actual evidence from an Indian RTO - the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad. The TVC of ARCI’s proprietary Detonation Spray Coating (DSC) technology is used to expand upon the CTM as well as to provide new insights wherever possible. The TVC adopted for DSC includes technology incubation and proof of concept in advance of transferring the technology. These strategies, aided by government funding of the technology recipient companies, were observed to play an important role in successful commercialization. © 2017, National Institute of Science Communication and Information Resources (NISCAIR). All rights reserved.

  • 73.
    Björklund, Stefan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Förbättrad lönsamhet för biogasanläggningar genom beläggning av knivar2016Conference paper (Other academic)
  • 74.
    Björklund, Stefan
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Goel, Sneha
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Function-dependent coating architectures by hybrid powder-suspension plasma spraying: Injector design, processing and concept validation2018In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 142, p. 56-65Article in journal (Refereed)
    Abstract [en]

    The attractive properties achieved by Suspension Plasma Spraying (SPS), combined with the availability of high throughput capable plasma spray systems that permit axial feeding, provide encouragement to explore use of suspensions for next generation functional applications. This paper deals with realization of coatings with various pre-determined function-dependent architectures by employing a hybrid powder-suspension feedstock. Some illustrative application-relevant coating architecture designs are discussed, along with the specific benefits that can accrue by deploying a multi-scale powder-suspension feedstock combination. An elegant feedstock delivery arrangement to enable either simultaneous or sequential feeding of powders and suspensions to enable convenient processing of coatings with desired architectures is presented. As proof-of-concept, deposition of layered, composite and functionally graded coatings using the above system is also demonstrated using appropriate case studies

  • 75.
    Bolelli, G.
    et al.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria “Enzo Ferrari”, Via Pietro Vivarelli 10/1, I-41125 Modena (MO), Italy.
    Berger, L. -M
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, D-01277 Dresden, Germany.
    Börner, T.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria “Enzo Ferrari”, Via Pietro Vivarelli 10/1, I-41125 Modena (MO), Italy.
    Koivuluoto, H.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, FI-33720 Tampere, Finland.
    Lusvarghi, L.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria “Enzo Ferrari”, Via Pietro Vivarelli 10/1, I-41125 Modena (MO), Italy.
    Lyphout, Christophe
    University West, Department of Engineering Science, Division of Production Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Matikainen, V.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, FI-33720 Tampere, Finland.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Sassatelli, P.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria “Enzo Ferrari”, Via Pietro Vivarelli 10/1, I-41125 Modena (MO), Italy.
    Trache, R.
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, D-01277 Dresden, Germany.
    Vuoristo, P.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, FI-33720 Tampere, Finland.
    Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatings: A comparative assessment2015In: Surface and Coatings Technology, ISSN 0257-8972, Vol. 265, p. 125-144Article in journal (Refereed)
    Abstract [en]

    his paper provides a comprehensive assessment of the sliding and abrasive wear behaviour of WC–10Co4Cr hardmetal coatings, representative of the existing state-of-the-art. A commercial feedstock powder with two different particle size distributions was sprayed onto carbon steel substrates using two HVOF and two HVAF spray processes.Mild wear rates of < 10-7 mm3/(Nm) and friction coefficients of ≈ 0.5 were obtained for all samples in ball-on-disk sliding wear tests at room temperature against Al2O3 counterparts. WC–10Co4Cr coatings definitely outperform a reference electrolytic hard chromium coating under these test conditions. Their wear mechanisms include extrusion and removal of the binder matrix, with the formation of a wavy surface morphology, and brittle cracking. The balance of such phenomena is closely related to intra-lamellar features, and rather independent of those properties (e.g. indentation fracture toughness, elastic modulus) which mainly reflect large-scale inter-lamellar cohesion, as quantitatively confirmed by a principal component analysis. Intra-lamellar dissolution of WC into the matrix indeed increases the incidence of brittle cracking, resulting in slightly higher wear rates. At 400 °C, some of the hardmetal coatings fail because of the superposition between tensile residual stresses and thermal expansion mismatch stresses (due to the difference between the thermal expansion coefficients of the steel substrate and of the hardmetal coating). Those which do not fail, on account of lower residual stresses, exhibit higher wear rates than at room temperature, due to oxidation of the WC grains.The resistance of the coatings against abrasive wear, assessed by dry sand–rubber wheel testing, is related to inter-lamellar cohesion, as proven by a principal component analysis of the collected dataset. Therefore, coatings deposited from coarse feedstock powders suffer higher wear loss than those obtained from fine powders, as brittle inter-lamellar detachment is caused by their weaker interparticle cohesion, witnessed by their systematically lower fracture toughness as well.

  • 76.
    Bolelli, G.
    et al.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria 'Enzo Ferrari', Via P. Vivarelli 10/1, Modena, MO, Italy .
    Berger, L.-M.
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, Dresden, Germany.
    Börner, T.
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, Dresden, Germany.
    Koivuluoto, H.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, Tampere, Finland .
    Matikainen, V.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, Tampere, Finland .
    Lusvarghi, L.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria 'Enzo Ferrari', Via P. Vivarelli 10/1, Modena, MO, Italy .
    Lyphout, Christophe
    University West, Department of Engineering Science, Division of Production Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Sassatelli, P.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria 'Enzo Ferrari', Via P. Vivarelli 10/1, Modena, MO, Italy .
    Trache, R.
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, Dresden, Germany .
    Vuoristo, P.c
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, Tampere, Finlan.
    Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2-NiCr hardmetal coatings2016In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 358-359, p. 32-50Article in journal (Refereed)
    Abstract [en]

    This paper provides a comprehensive characterisation of HVOF- and HVAF-sprayed Cr3C2–25 wt.% NiCr hardmetal coatings. One commercial powder composition with two different particle size distributions was processed using five HVOF and HVAF thermal spray systems.All coatings contain less Cr3C2 than the feedstock powder, possibly due to the rebound of some Cr3C2-rich particles during high-velocity impact onto the substrate.Dry sand-rubber wheel abrasive wear testing causes both grooving and pull-out of splat fragments. Mass losses depend on inter- and intra-lamellar cohesion, being higher (≥70 mg after a wear distance of 5904 m) for the coatings deposited with the coarser feedstock powder or with one type of HVAF torch.Sliding wear at room temperature against alumina involves shallower abrasive grooving, small-scale delamination and carbide pull-outs, and it is controlled by intra-lamellar cohesion. The coatings obtained from the fine feedstock powder exhibit the lowest wear rates (≈5x10−6 mm3/(Nm)). At 400 °C, abrasive grooving dominates the sliding wear behaviour; wear rates increase by one order of magnitude but friction coefficients decrease from ≈0.7 to ≈0.5. The thermal expansion coefficient of the coatings (11.08x10−6 °C−1 in the 30–400 °C range) is sufficiently close to that of the steel substrate (14.23x10−6 °C−1) to avoid macro-cracking

  • 77.
    Bolmsjö, Gunnar
    et al.
    Linnaeus University, Växjö, Sweden.
    Ferreira Magalhães, Ana Catarina
    University West, Department of Engineering Science, Division of Production Systems. University West, Department of Engineering Science, Division of Welding Technology.
    Cederqvist, L.
    SKB AB, Oskarshamn, Sweden.
    De Backer, Jeroen
    University West, Department of Engineering Science, Division of Production Systems.
    Robotic Friction Stir Welding of complex geometry and mixed materials2018In: 50th International Symposium on Robotics, ISR 2018, VDE Verlag GmbH , 2018, p. 35-41Conference paper (Refereed)
    Abstract [en]

    Friction stir welding (FSW) is a solid state process for joining materials which has demonstrated advantages compares with other methods which include joining of mixed materials, hard to weld alloys and consistent and high quality. This paper presents a study of robotic FSW initiated by Volvo Skövde plant to join an insert workpiece of extruded aluminium with a cylinder block of aluminium casting. A three-stage procedure was decided to determine the feasibility to apply robotic FSW. The stages included study of welding the mixed materials, weld along the complex joint line with holes and channels close to the joint, and finally welding the cylinder block. The results based on preliminary analysis indicate that the final tests were successful and the process is feasible for the challenging case study. However, further studies are recommended in order to identify the operating parameters window, tool design, and control of the process in order to optimize productivity and quality. © VDE VERLAG GMBH

  • 78.
    Bonilla Hernández, Ana Esther
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    On cutting tool resource management2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The search for increased productivity and cost reduction in machining can be interpreted as desire to increase the Material Removal Rate, , and maximize the cutting tool utilization. The CNC process is complex and involves numerous constraints and parameters; ranging from tolerances to machinability. A well-managed preparation process creates the foundation for achieving a reduction in manufacturing errors and machining time. Along the preparation process of the NC-program, two different studies have been performed and are presented in this thesis. One study examined the CAM programming process from the Lean perspective. The other study includes an evaluation of how the cutting tools are used in terms of and tool utilization. Two distinct combinations of cutting data might provide the same . However, the tool life and machining cost can be different. Therefore, selection of appropriate cutting parameters that best meet all these objectives is challenging. An algorithm for analysis and efficient selection of cutting data for maximal , maximal tool utilization and minimal machining cost has been developed and is presented in this work. The presented algorithm shortens the time dedicated to the optimized cutting data selection and the needed iterations along the program development. Furthermore, the objectives that need to be considered during the estimation of the manufacturing processes sustainability have been identified. In addition, this thesis also includes a theoretical study to estimate energy use, CO2-footprint and water consumption during the manufacture of a workpiece, which can be invaluable for companies in their search for sustainability of their manufacturing processes.

  • 79.
    Bonilla Hernández, Ana Esther
    University West, Department of Engineering Science, Research Enviroment Production Technology West. GKN Aerospace Engine Systems AB, Flygmotorvagen 1, Trollhattan, 46138, Sweden.
    On how the selection of materials affects sustainability2019In: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 33, p. 625-631Article in journal (Refereed)
    Abstract [en]

    The selection of the materials for the production of aerospace engine products is directly related to their performance in tough working conditions. However, the extraction of the materials requires high amounts of energy, use water and emit CO2, which can be directly related with environmental sustainability. The abundance of the materials and their sourcing and geographical location can be further related to economic and social sustainability. Manufacturing companies look for different materials and cutting data that will optimize material removal rate, cutting tool utilization, required cutting time, costs, energy used, CO2 footprint, coolants, etc. Here is presented a simple methodology to calculate the sustainability impact of the selection of materials. The study compares a simplified theoretical work piece that is geometrically complex and made of difficult to machine material, e.g. Ti-6Al-4V and MP159. The study shows how to select the optimal material, not only in terms of costs, but also in terms of environmental, societal and economical sustainability. © 2019 The Authors. Published by Elsevier B.V.

  • 80.
    Bonilla Hernández, Ana Esther
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West. GKN Aerospace Engine Systems AB, Trollhättan, Sweden.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Fredriksson, Claes
    University West, Department of Engineering Science, Division of Industrial Engineering and Management, Electrical- and Mechanical Engineering.
    Energy and Cost Estimation of a Feature-based Machining Operation on HRSA2017In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 61, no Supplement C, p. 511-516Article in journal (Refereed)
    Abstract [en]

    Forward-looking manufacturing companies aim for sustainable production with low environmental footprint. This is true also for aerospace engine-makers, although their environmental impact mostly occurs during the use-phase of their products. Materials, such as Nickel alloys, are used for special applications where other materials will not withstand tough working conditions in terms of pressure and temperature. Heat Resistant Super Alloys are, however, considered difficult to machine and cutting tools will wear off rapidly. In this paper, a simple way to estimate the energy required, the cost and environmental footprint to produce a work piece using standard engineering software is presented. The results show that for a hypothetical 3 tonne work piece, Inconel 718 will be considerably cheaper and require less water but will require more energy, and has considerably larger CO2 footprint than Waspaloy.

  • 81.
    Bonilla Hernández, Ana Esther
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Production Engineering. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Repo, Jari
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Wretland, Anders
    GKN Aerospace Engine Systems AB, Trollhättan, Sweden.
    Analysis of Tool Utilization from Material Removal Rate Perspective2015In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 29, p. 109-113Article in journal (Refereed)
    Abstract [en]

    An end of life strategy algorithm has been used to study a CNC program to evaluate how the cutting inserts are used in terms of their full utilization. Utilized tool life (UTL) and remaining tool life (RTL) were used to evaluate if the insert has been used to its limits of expected tool life, or contributing to an accumulated tool waste. It is demonstrated that possible means to improvement exists to increase the material removal rate (MRR), thereby using the insert until its remaining tool life is as close to zero as possible. It was frequently found that inserts were used well below their maximum performance with respect to cutting velocity.

  • 82.
    Bonilla Hernández, Ana Esther
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Manufacturing Processes. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Repo, Jari
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Wretland, Anders
    GKN Aerospace Engine Systems AB, Trollhättan, Sweden.
    Integrated optimization model for cutting data selection based on maximal MRR and tool utilization in continuous machining operations2016In: CIRP - Journal of Manufacturing Science and Technology, ISSN 1755-5817, E-ISSN 1878-0016, Vol. 13, p. 46-50Article in journal (Refereed)
    Abstract [en]

    The search for increased productivity can be interpreted as the increase of material removal rate (MRR). Namely, increase of feed, depth of cut and/or cutting speed. The increase of any of these three variables, will increase the tool wear rate; therefore decreasing its tool life according to the same tool life criteria. This paper proposes an integrated model for efficient selection of cutting data for maximal MRR and maximal tool utilization. The results show that, it is possible to obtain a limited range of cutting parameters from where the CAM Programmer can select the cutting data assuring both objectives.

  • 83.
    Bonilla Hernández, Ana Esther
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Repo, Jari
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Wretland, Anders
    GKN Aerospace Engine Systems AB, Trollhättan, Sweden.
    Streamlining the CAM programming process by Lean Principles within the aerospace industryManuscript (preprint) (Other academic)
  • 84.
    Broberg, Patrik
    University West, Department of Engineering Science, Division of Automation Systems.
    Analytic model for pulsed thermography of subsurface defects2014In: Archives QIRT 2014: Documents and sessions presented during the 12nd conference QIRT (Bordeaux, France), QIRT , 2014, p. 1-5Conference paper (Refereed)
    Abstract [en]

    An analytic solution to the heat equation is used to model the response of subsurface defects in pulsed thermography. The model is compared to measurement data and shows good agreement, both in spatial and temporaldomain. The capability of the model is then demonstrated by calculating the response of arbitrary defects at different depth. This model, even though simplified, can prove useful due to good accuracy and low computational time forcomparing analysis methods and for evaluating a thermography method on a new material or new type of defect.

  • 85.
    Broberg, Patrik
    University West, Department of Engineering Science, Division of Automation Systems.
    Imaging and analysis methods for automated weld inspection2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    All welding processes can give rise to defects, which weakens the joint and can eventually lead to the failure of the welded structure. In order to inspect welds for detects, without affecting the usability of the product, non-destructive testing (NDT) is needed. NDT includes a wide range of different techniques, based on different physical principles, each with its advantages and disadvantages. The testing is often performed manually by a skilled operator and in many cases only as spot-checks. Today the trend in industry is to move towards thinner material, in order to save weight for cost and for environmental reasons. The need for inspection of a larger portion of welds therefore increases and there is an increasing demand for fully automated inspection, including both the mechanised testing and the automatic analysis of the result. Compared to manual inspection, an automated solution has advantages when it comes to speed, cost and reliability. A comparison of several NDT methods was therefore first performed in order to determine which methods have most potential for automated weld inspection. Automated analysis of NDT data poses several difficulties compared to manual data evaluation. It is often possible for an operator to detect defects even in noisy data, through experience and knowledge about the part being tested. Automatic analysis algorithms on the other hand suffer greatly from both random noise as well as indications that originate from geometrical variations. The solution to this problem is not always obvious. Some NDT techniques might not be suitable for automated inspection and will have to be replaced by other, better adapted methods. One such method that has been developed during this work is thermography for the detection of surface cracks. This technique offers several advantages, in terms of automation, compared to existing methods. Some techniques on the other hand cannot be easily replaced. Here the focus is instead to prepare the data for automated analysis, using various pre-processing algorithms, in order to reduce noise and remove indications from sources other than defects. One such method is ultrasonic testing, which has a good ability for detecting internal defects but suffers from noisy signals with low spatial resolution. Work was here done in order to separate indications from corners from other indications. This can also help to improve positioning of the data and thereby classification of defects. The problem of low resolution was handled by using a deconvolution algorithm in order to reduce the effect of the spread of the beam.The next step in an automated analysis system is to go beyond just detection and start characterising defects. Using knowledge of the physical principles behind the NDT method in question and how the properties of a defect affect the measurement, it is sometimes possible to develop methods for determining properties such as the size and shape of a defect. This kind of characterisation of a defect is often difficult to do in the raw data, and is therefore an area where automated analysis can go beyond what is possible for an operator during manual inspection. This was shown for flash thermography, where an analysis method was developed that could determine the size, shape and depth of a defect. Similarly for laser ultrasound, a method was developed for determining the size of a defect.

  • 86.
    Broberg, Patrik
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Surface crack detection in welds using thermography2013In: NDT & E international, ISSN 0963-8695, E-ISSN 1879-1174, Vol. 57, p. 69-73Article in journal (Refereed)
    Abstract [en]

    Thermography is today used within non-destructive testing for detecting several different types of defects. The possibility for using thermography for detecting surface cracks in welded metal plates has here been investigated. During testing the weld is illuminated using a high power infrared light source. Due to surface cracks acting like black bodies, they will absorb more energy than the surrounding metal and can be identified as a warmer area when imaged using an infrared camera. Notches as well as real longitudinal cold cracks in a weld are investigated using the presented method. The results show that thermography is promising as a method for detection cracks open to the surface.

  • 87.
    Broberg, Patrik
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Runnemalm, Anna
    University West, Department of Engineering Science, Division of Production Systems.
    Analysis algorithm for surface crack detection by thermography with UV light excitation2016In: Quantitative InfraRed Thermography 2016: Abstracts / [ed] Kaczmarek, M. & Bujnowski, A., Gdańsk, Poland: Publishing Gdańsk University of Technology , 2016, p. 144-149Conference paper (Refereed)
    Abstract [en]

    Surface crack defects can be detected by IR thermograpgy due to the high absorption of energy within the crack cavity. It is often difficult to detect the defect in the raw data, since the signal easily drowns in the background. It is therefore important to have good analysis algorithms that can reduce the background and enhance the defect. Here an analysis algorithm is presented which significantly increases the signal to noise ratio of the defects and reduces the image sequence from the camera to one image.

  • 88.
    Broberg, Patrik
    et al.
    University West, Department of Engineering Science, Division of Process and Product Development.
    Runnemalm, Anna
    University West, Department of Engineering Science, Division of Process and Product Development.
    Detection of Surface Cracks in Welds using Active Thermography2012In: Proceedings18th World Conference on Non-Destructive Testing: 16 - 20 April 2012, Durban, South Africa, South African Institute for Non-Destructive Testing (SAINT) , 2012, p. 1-5Conference paper (Refereed)
    Abstract [en]

    Surface cracks in welds can be detected using several non-destructive testing methods; among the more popular ones are eddy current, penetrant and magnetic particle testing. For an automatic inspection cell, the traditional techniques have limitations. Here we have investigated the possibility of using active thermography for detecting surface cracks in welds. This technique features advantages such as non-contact and high speed. The weld is illuminated using an infrared light source. Due to higher energy absorption in a surface crack, the defect will be identified as a hot spot when imaged by an infrared camera. Artificial weld defects (notches) are investigated by use of active thermography. Results from an inspection of real longitudinal cold cracks in a weld are also presented. The results show that active thermography looks promising for detection of even small cracks and notches, as long as they are open to the surface.

  • 89.
    Cederberg, Emil
    University West, Department of Engineering Science, Division of Welding Technology.
    Influence of welding and additive manufacturing thermal cycles on microstructure and properties of super duplex stainless steel base and weld metal studied by a physical simulation technique2018Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Super duplex stainless steel (SDSS) is known for its excellent combination of high corrosion resistance and strength. However, the main limitations in SDSS applications are the risk of getting an imbalanced ferrite and austenite fraction and the sensitivity to form intermetallic phases at temperatures between approximately 600-1000 °C. During welding of SDSS, the welding parameters must be selected carefully in order to avoid formation of intermetallic phases such as sigma phase due to slow cooling or multiple reheating. In addition, special care is needed to have a balanced ferrite and austenite fraction. In this work, the influence of multiple thermal cycles and cooling rate on the microstructure of SDSS base and weld metal was investigated. A novel heat treatment method, using a stationary TIG arc, was performed to produce the samples. The test discs were composed of base and weld metal. Five samples were produced including 1, 5, and 15 passes of rapid cooling, one sample with medium cooling and one with slow cooling. The cooling time between 1000-700 °C was aimed at being similar for the pair of 5 passes and medium cooling and the other pair of 15 passes and slow cooling. The material was characterized by light optical microscopy and scanning electron microscopy while hardness mapping and sensitization testing were employed to evaluate the properties. It was revealed that sigma phase was more prone to precipitate in the weld compared to the base metal when exposed to high ageing temperature and repeated thermal cycles. Slow cooling was found to promote sigma phase precipitation more than multiple reheating in the weld metal. In the base metal, a minor difference was found between the slowly cooled and multiple reheated samples. Rapid cooling in multiple reheating generated nitrides in the fusion boundary zone. As more reheating passes were applied, the amount of nitrides decreased. Multipass reheating cycles also resulted in increased hardness and nitrogen depletion adjacent to the fusion boundary zone causing the ferrite content to increase. Based on this study, less sigma phase precipitation in the weld metal was achieved when using multiple reheating passes with low heat input instead of a few passes with high heat input, providing equal accumulative heating time between 1000-700 °C. However, the influence of multiple reheating on the hardness was larger compared to slow cooling.

  • 90.
    Cernuschi, F.
    et al.
    RSE – Ricerca per il Sistema Energetico, Via Rubattino, 54, 20134 Milano.
    Lorenzoni, L.
    RSE – Ricerca per il Sistema Energetico, Via Rubattino, 54, 20134 Milano.
    Capelli, S.
    RSE – Ricerca per il Sistema Energetico, Via Rubattino, 54, 20134 Milano.
    Guardamagna, C.
    RSE – Ricerca per il Sistema Energetico, Via Rubattino, 54, 20134 Milano.
    Karger, M.
    Forschungszentrum Jülich GmbH, Institut für Energieforschung IEF-1, 52425 Jülich.
    Vaßen, R.
    Forschungszentrum Jülich GmbH, Institut für Energieforschung IEF-1, 52425 Jülich.
    von Niessen, K.
    Sulzer Metco AG, Rigackerstr. 16, CH-5610, Wohlen.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Menuey, J.
    Snecma, 1 Rue Maryse Bastié, 86100 Châtellerault.
    Giolli, C.
    Turbocoating SpA, Via Mistrali 7, Rubbiano di Solignano,.
    Solid particle erosion of thermal spray and physical vapour deposition thermal barrier coatings2011In: Wear, Vol. 271, no 11-12, p. 2909-2918Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBC) are used to protect hot path components of gas turbines from hot combustion gases. For a number of decades, in the case of aero engines TBCs are usually deposited by electron beam physical vapour deposition (EB-PVD). EB-PVD coatings have a columnar microstructure that guarantees high strain compliance and better solid particle erosion than PS TBCs. The main drawback of EB-PVD coating is the deposition cost that is higher than that of air plasma sprayed (APS) TBC. The major scientific and technical objective of the UE project TOPPCOAT was the development of improved TBC systems using advanced bonding concepts in combination with additional protective functional coatings. The first specific objective was to use these developments to provide a significant improvement to state-of-the-art APS coatings and hence provide a cost-effective alternative to EB-PVD. In this perspective one standard porous APS, two segmented APS, one EB-PVD and one PS-PVD™ were tested at 700°C in a solid particle erosion jet tester, with EB-PVD and standard porous APS being the two reference systems.Tests were performed at impingement angles of 30° and 90°, representative for particle impingement on trailing and leading edges of gas turbine blades and vanes, respectively. Microquartz was chosen as the erodent being one of the main constituents of sand and fly volcanic ashes. After the end of the tests, the TBC microstructure was investigated using electron microscopy to characterise the failure mechanisms taking place in the TBC.It was found that PS-PVD™ and highly segmented TBCs showed erosion rates comparable or better than EB-PVD samples. © 2011 Elsevier B.V.

  • 91. Chakravarty, D.
    et al.
    Tiwary, C. S.
    Machado, L. D.
    Brunetto, G.
    Vinod, S.
    Yadav, R. M.
    Galvao, D. S.
    Joshi, Shrikant V.
    Sundararajan, G.
    Ajayan, P. M.
    Zirconia-Nanoparticle-Reinforced Morphology-Engineered Graphene-Based Foams2015In: Advanced Materials, Vol. 27, no 31, p. 4534-4543Article in journal (Refereed)
    Abstract [en]

    The morphology of graphene-based foams can be engineered by reinforcing them with nanocrystalline zirconia, thus improving their oil-adsorption capacity; This can be observed experimentally and explained theoretically. Low zirconia fractions yield flaky microstructures where zirconia nanoparticles arrest propagating cracks. Higher zirconia concentrations possess a mesh-like interconnected structure where the degree of coiling is dependant on the local zirconia content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 92.
    Charles, Corinne
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Modelling Microstructure Evolution in Weld Deposited Titanium2007In: NAFEMS Contact Nordic Countries, 2007, NAFEMS Nordic seminar; 4 (Oslo): 2007.03.20-21, 2007Conference paper (Other academic)
  • 93.
    Charles, Corinne
    University West, Department of Engineering Science, Division of Production Engineering.
    Modelling microstructure evolution of weld deposited Ti-6Al-4V2008Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The microstructure and consequently the mechanical properties of titanium alloys are highly dependent on the temperature history endured by the material. The manufacturing process of metal deposition induces repetitive cooling and heating in the material determining a specific microstructure. The presented study is devoted to developing and implementing a microstructure model for Ti-6Al-4V intended to be coupled to a thermo- mechanical model of the metal deposition process.

    Microstructural analysis of the metal deposited samples was first performed to understand the formed microstructure. A set of representative parameters for microstructure modelling were then selected as representative for the known impact of Ti-6Al-4V microstructure on mechanical properties. Evolution equations for these parameters were implemented for thermal finite element analysis of the process. Six representative state variables are modelled: the phase volume fraction of total alpha, beta, Widmanstätten alpha, grain boundary alpha, martensite alpha, and the alpha lath thickness. Heating, cooling and repeated re-heating involved in the process of metal deposition are taken into account in the model. The phase transformations were modelled based on a diffusionnal theory described by a Johnson-Mehl-Avrami formulation, as well as diffusionless transformations for the martensite alpha formation and the beta reformation during reheating. The Arrhenius equation is applied as a simplification to model temperature dependent alpha lath size calculation. Grain growth is not included in the present formulation, but would have to be added for capturing alpha lath coarsening during long term heat treatment.

    The temperature history during robotised tungsten inert gas deposition welding is simulated together with the microstructure. The implementation of the model handles well the complex cyclic thermal loading from the metal deposition process. A particular banded structure observed in the metal deposited microstructure is partially explained using the proposed microstructure model. It is concluded that although qualitatively interesting results have been achieved, further calibration testing over a wider range of temperature histories must be performed to improve the transformation kinetic parameters for reliable quantitative predictions of the microstructure.

  • 94.
    Charles, Corinne
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Järvstråt, Niklas
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Development of a Microstructure Model for Metal Deposition of Titanium Alloy Ti-6Al-4V2007In: Ti-2007 : science and technology : proceedings of the 11th World Conference on Titanium (JIMIC 5): held at Kyoto International Conference Center, Kyoto, Japan, 3 - 7 June 2007, 2007, p. 1201-1205Conference paper (Refereed)
  • 95.
    Charles, Corinne
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Järvstråt, Niklas
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Finite Element Modelling of Microstructure on GTAW Metal Deposition of Ti-6Al-4V alloy2006In: Computer Technology in Welding and Manufacturing : 16th International Conference & Mathematical Modelling and Information Technologies in Welding and Related Processes: Kiev, Ukraine, June 6-8, 2006Conference paper (Other academic)
  • 96.
    Charles, Corinne
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Järvstråt, Niklas
    University West, Department of Engineering Science, Division of Production Engineering.
    Modelling Ti-6Al-4V microstructure by evolution laws implemented as finite element subroutines:: Application to TIG metal deposition2008In: 8 th International Conference on Trends in welding research,: Pine Mountain, Georgia, June 2-6, 2008Conference paper (Other academic)
  • 97.
    Charles Murgau, Corinne
    University West, Department of Engineering Science, Avdelningen för svetsteknologi (SV).
    Microstructure model for Ti-6Al-4V used in simulation of additive manufacturing2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is devoted to microstructure modelling of Ti-6Al-4V. The microstructure and the mechanical properties of titanium alloys are highly dependent on the temperature history experienced by the material. The developed microstructure model accounts for thermaldriving forces and is applicable for general temperature histories. It has been applied to study wire feed additive manufacturing processes that induce repetitive heating and cooling cycles.The microstructure model adopts internal state variables to represent the microstructure through microstructure constituents' fractions in finite element simulation. This makes it possible to apply the model efficiently for large computational models of general thermomechanical processes. The model is calibrated and validated versus literature data. It is applied to Gas Tungsten Arc Welding -also known as Tungsten Inert Gas welding-wire feed additive manufacturing process.Four quantities are calculated in the model: the volume fraction of phase, consisting of Widmanstätten, grain boundary, and martensite. The phase transformations during cooling are modelled based on diffusional theory described by a Johnson-Mehl-Avrami-Kolmogorov formulation, except for diffusionless martensite formation where the Koistinen-Marburger equation is used. A parabolic growth rate equation is used for the to transformation upon heating. An added variable, structure size indicator of Widmanstätten, has also been implemented and calibrated. It is written in a simple Arrhenius format.The microstructure model is applied to in finite element simulation of wire feed additive manufacturing. Finally, coupling with a physically based constitutive model enables a comprehensive and predictive model of the properties that evolve during processing.

  • 98.
    Charles Murgau, Corinne
    et al.
    University West, Department of Engineering Science, Avdelningen för svetsteknologi (SV).
    Lundbäck, Andreas
    Division of Mechanics of Solid Materials, Luleå University of Technology, 971 81 Luleå, Sweden .
    Åkerfeldt, Pia
    Division of Materials Science, Luleå University of Technology, 971 81 Luleå, Sweden .
    Pederson, Robert
    GKN Aerospace Engine Systems, 461 81 Trollhättan, Sweden .
    Temperature and microstructure evolution in Gas Tungsten Arc Welding wire feed additive manufacturing of Ti-6Al-4VArticle in journal (Other academic)
    Abstract [en]

    The Finite Element Method (FEM) is used to solve temperature field and microstructure evolution during GTAW wire feed additive manufacturing process.The microstructure of titanium alloy Ti-6Al-4V is computed based on the temperature evolution in a point-wise logic. The methodology concerning the microstructural modeling is presented. A model to predict the thickness of the Į lath morphology is also implemented. The results from simulations are presented togethe rwith qualitative and quantitative microstructure analysis.

  • 99.
    Chazelas, Christophe
    et al.
    European Ceramic Center, SPCTS CNRS UMR 7315, University of Limoges, Limoges, France.
    Trelles, Juan Pablo
    Mechanical Engineering, University of Massachusetts Lowell, Lowell, USA.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Vardelle, Armelle
    European Ceramic Center, SPCTS CNRS UMR 7315, University of Limoges, Limoges, France.
    Main issues for a fully predictive plasma spray torch model and numerical considerations2017In: Plasma chemistry and plasma processing, ISSN 0272-4324, E-ISSN 1572-8986, Vol. 37, no 3, p. 627-651Article in journal (Refereed)
    Abstract [en]

    Plasma spray is one of the most versatile and established techniques for the deposition of thick coatings that provide functional surfaces to protect or improve the performance of the substrate material. However, a greater understanding of plasma spray torch operation will result in improved control of process and coating properties and in the development of novel plasma spray processes and applications. The operation of plasma torches is controlled by coupled dynamic, thermal, chemical, electromagnetic, and acoustic phenomena that take place at different time and space scales. Computational modeling makes it possible to gain important insight into torch characteristics that are not practically accessible to experimental observations, such as the dynamics of the arc inside the plasma torch. This article describes the current main issues in carrying out plasma spray torch numerical simulations at a high level of fidelity. These issues encompass the use of non-chemical and non-thermodynamic equilibrium models, incorporation of electrodes with sheath models in the computational domain, and resolution of rapid transient events, including the so-called arc reattachment process. Practical considerations regarding model implementation are also discussed, particularly the need for the model to naturally reproduce the observed torch operation modes in terms of voltage and pressure fluctuations.

  • 100.
    Chen, Y.
    et al.
    University of Manchester, School of Materials, Manchester, United Kingdom.
    Zhao, X.
    Shanghai Jiao Tong University, Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai, China .
    Dang, Y.
    University of Manchester, School of Materials, Manchester, United Kingdom.
    Xiao, Ping
    University of Manchester, School of Materials, Manchester, United Kingdom.
    Curry, Nicholas
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 94, p. 1-14Article in journal (Refereed)
    Abstract [en]

    The residual stresses in a NiCoCrAlY bond coat deposited on a Ni-base superalloy substrate after oxidation at 1150 °C were studied by X-ray diffraction using the sin2Ψ technique. The stresses were found to be tensile; they first increased and then decreased with oxidation time. High temperature stress measurement indicated that the stress developed and built up upon cooling, predominantly within the temperature range from 1150 °C to 600 °C. Microstructural examination suggested that, due to the limited penetration depth into the bond coat, the X-ray only probed the stress in a thin surface layer consisting of the single γ-phase formed through Al depletion during oxidation. Quantitative high temperature X-ray diffraction analysis revealed that, above 600 °C, the volume fraction of the β-phase in the bond coat increased with decreasing temperature. The mechanisms of stress generation in the bond coat were examined and are discussed based on the experiments designed to isolate the contribution of possible stress generation factors. It was found that the measured bond coat stresses were mainly induced by the volume change of the bond coat associated with the precipitation of the β-phase upon cooling.

1234567 51 - 100 of 723
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf