Change search
Refine search result
2345678 201 - 250 of 575
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 201.
    Harati, Ebrahim
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Improving fatigue strength of welded 1300 MPa yield strength steel using HFMI treatment or LTT fillers2017In: Engineering Failure Analysis, ISSN 1350-6307, E-ISSN 1873-1961, Vol. 79, no September, p. 64-74Article in journal (Refereed)
    Abstract [en]

    Fatigue improvement techniques are widely used to increase fatigue strength of welded high strength steels. In this paper high frequency mechanical impact (HFMI) and a Low Transformation Temperature (LTT) filler material were employed to investigate the effect on fatigue strength of welded 1300 MPa yield strength steel. Fatigue testing was done under fully reversed, constant amplitude bending load on T-joint samples. Fatigue strength of LTT welds was the same as for welds produced using a conventional filler material. However, HFMI treatment increased the mean fatigue strength of conventional welds about 26% and of LTT welds about 13%. Similar distributions of residual stresses and almost the same weld toe radii were observed for welds produced using LTT and conventional consumables. HFMI increased the weld toe radius slightly and produced a more uniform geometry along the treated weld toes. Relatively large compressive residual stresses, adjacent to the weld toe were produced and the surface hardness was increased in the treated region for conventional welds after HFMI. For this specific combination of weld geometry, steel strength and loading conditions HFMI treatment gave higher fatigue strength than LTT consumables.

  • 202.
    Harati, Ebrahim
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    The measurement of weld toe radius using three non-destructive techniques2014In: Proceedings of The 6th International Swedish Production Symposium 201416-18 September 2014 / [ed] Johan Stahre, Björn Johansson,Mats Björkman, 2014, p. 1-8Conference paper (Refereed)
    Abstract [en]

    The three non-destructive methods Weld Impression Analysis, Laser Scanning Profiling and Structured Light Projection were employed to measure the weld toe radius of fillet welds. All three methods could be used succesfully but results are dependent on evaluation procedure. The results show that the weld toe geometry cannot be considered uniform and varies along the weld. It was also found that the measured weld toe radii do not vary significantly with minor variations ofthe surface profile orientation.

  • 203.
    Harati, Ebrahim
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Widmark, Mattias
    Material Technology, Volvo Group Trucks Technology, Gothenburg, Sweden.
    Effect of high frequency mechanical impact treatment on fatigue strength of welded 1300 MPa yield strength steel2016In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 92, p. 96-106Article in journal (Refereed)
    Abstract [en]

    High frequency mechanical impact (HFMI) is a recent post weld treatment method which can be employed to increase the fatigue strength of welded components. In this paper the fatigue strength of as-welded and HFMI treated fillet welds in a 1300 MPa yield strength steel was compared. Fatigue testing was done under fully reversed, constant amplitude bending load. Finite element analysis was used to calculate the stress distribution in the weld toe region to permit evaluation of the fatigue data with the effective notch stress approach. As-welded samples showed a mean fatigue strength of 353 MPa and a characteristic fatigue strength of 306 MPa. HFMI treatment increased the mean fatigue strength by 26% and the characteristic fatigue strengths by 3%. The weld toe radii in as-welded condition were large. HFMI only increased the weld toe radii slightly but resulted in a more uniform weld toe geometry along the weld. A depth of indentation in the base metal in the range of 0.15–0.19 mm and a width of indentation in the range of 2.5–3 mm, were achieved. Maximum compressive residual stresses of about 800 MPa in the longitudinal and 250 MPa in the transverse direction were introduced by HFMI treatment, adjacent to the weld toe. The surface hardness was increased in the entire HFMI treated region. It is concluded that the increase in fatigue strength is due to the combined effects of the weld toe geometry modification, increase in surface hardness and creation of compressive residual stresses in the treated region.

  • 204.
    Hoier, P.
    et al.
    Chalmers University of Technology, Department of Materials and Manufacturing Technology,GothenburgSweden.
    Klement, Uta
    Chalmers University of Technology, Department of Materials and Manufacturing Technology,GothenburgSweden.
    Tamil Alagan, Nageswaran
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Wretland, A.
    KN Aerospace Engine Systems AB,Trollhättan,Sweden.
    Characterization of tool wear when machining alloy 718 with high-pressure cooling using conventional and surface-modified WC-Co tools2017In: Journal of Superhard Materials, ISSN 1063-4576, Vol. 39, no 3, p. 178-185Article in journal (Refereed)
    Abstract [en]

    Coolant supplied by high pressure into the cutting zone has shown the lower thermal loads on the tool when machining difficult-to-cut materials as the Alloy 718. In this study, we investigate how the combination of high-pressure cooling and tool-surface modifications can lead to further improvements regarding tool life. The general approach is to enhance the coolant-tool interaction by increasing the contact area. Therefore, we machined cooling features into flank and rake faces of commercially available cemented tungsten carbide inserts. In this way, the surface area was increased by similar to 12%. After the cutting tests, the tools were analyzed by scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Compared with conventional tools, the tool modifications reduced the flank wear by 45% for the investigated cutting parameters. Furthermore, we were able to significantly increase the cutting speed and feed rate without failure of the tool. The investigated surface modifications have great potential to enhance the productivity of metal cutting processes.

  • 205.
    Hoier, Philipp
    et al.
    Chalmers University of Technology, Department of Materials and Manufacturing Technology, Gothenburg, Sweden.
    Klement, Uta
    Chalmers University of Technology, Department of Materials and Manufacturing Technology, Gothenburg, Sweden.
    Tamil Alagan, Nageswaran
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Wretland, Anders
    GKN Aerospace Engine Systems AB, Trollhättan, Sweden.
    Characterization of tool wear when machining Alloy 718 with high pressure cooling using conventional and surface-modified WC-Co tools2016In: The 7th International Swedish Production Symposium, SPS16, Conference Proceedings: 25th – 27th of October 2016, Lund: Swedish Production Academy , 2016, p. 1-7Conference paper (Refereed)
    Abstract [en]

    Coolant supplied by high pressure into the cutting zone has shown to lower thermal loads on the tool when machining difficult-to-cut materials as Alloy 718. In this study, we investigate how the combination of high pressure cooling and tool-surface modifications can lead to further improvements regarding tool life. The general approach is to enhance the coolant-tool interaction by increasing the contact area. Therefore, we machined cooling features into flank and rake faces of commercially available cemented tungsten carbide inserts. In this way, the surface area was increased by ~ 12%. After the cutting tests, the tools were analyzed by scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Compared with conventional tools, the tool modifications reduced the flank wear by 45% for the investigated cutting parameters. Furthermore, we were able to significantly increase the cutting speed and feed rate without failure of the tool. The investigated surface modifications have great potential to enhance the productivityof metal cutting processes.

  • 206.
    Hoier, Philipp
    et al.
    Chalmers University of Technology, Department of Industrial and Materials Science,Gothenburg, Sweden.
    Klement, Uta
    Chalmers University of Technology, Department of Industrial and Materials Science,Gothenburg, Sweden.
    Tamil Alagan, Nageswaran
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Wretland, Anders
    GKN Aerospace Engine Systems AB, Trollhättan, Sweden.
    Flank wear characteristics of WC-Co tools when turning Alloy 718 with high-pressure coolant supply2017In: Journal of Manufacturing Processes, ISSN 1526-6125, Vol. 30, no Supplement C, p. 116-123Article in journal (Refereed)
    Abstract [en]

    In the present study, the tool wear mechanisms of uncoated cemented tungsten carbide (WC-Co) tools during machining Alloy 718 with high-pressure coolant supply are investigated. Worn flank faces are analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). With increasing spiral cutting length, larger areas on the tool surface are subjected to erosion of Co-binder by the coolant jet impact. Moreover, the amount and morphology of workpiece-precipitates adhered on worn flank surfaces are influenced significantly by the extent of flank wear land (due to increasing spiral cutting length). The reasons for the obtained results are addressed with respect to the underlying mechanisms. Possible implications for the tool wear behavior are discussed.

  • 207.
    Holmberg, Jonas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Surface integrity on post processed alloy 718 after nonconventional machining2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    There is a strong industrial driving force to find alternative production technologies in order to make the production of aero engine components of superalloys even more efficient than it is today. Introducing new and nonconventional machining technologies allows taking a giant leap to increase the material removal rate and thereby drastically increase the productivity. However, the end result is to meet the requirements set for today's machined surfaces.The present work has been dedicated to improving the knowledge of how the non-conventional machining methods Abrasive Water Jet Machining, AWJM, Laser Beam Machining, LBM, and Electrical Discharge Machining, EDM, affect the surface integrity. The aim has been to understand how the surface integrity could be altered to an acceptable level. The results of this work have shown that both EDM and AWJM are two possible candidates but EDM is the better alternative; mainly due to the method's ability to machine complex geometries. It has further been shown that both methods require post processing in order to clean the surface and to improve the topography and for the case of EDM ageneration of compressive residual stresses are also needed.Three cold working post processes have been evaluated in order to attain this: shot peening, grit blasting and high pressure water jet cleaning, HPWJC. There sults showed that a combination of two post processes is required in order to reach the specified level of surface integrity in terms of cleaning and generating compressive residual stresses and low surface roughness. The method of high pressure water jet cleaning was the most effective method for removing the EDM wire residuals, and shot peening generated the highest compressive residual stresses as well as improved the surface topography.To summarise: the most promising production flow alternative using nonconventional machining would be EDM followed by post processing using HPWJC and shot peening.

  • 208.
    Holmberg, Jonas
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Swerea IVF AB, Argongatan 30, Mölndal SE-431 53, Sweden.
    Prieto, Juan Manuel Rodri­guez
    Luleå University of Technology, Division of Mechanics of Solid Materials Department of Engineering Sciences and Mathematics. Luleå SE-971 87, Sweden.
    Berglund, Johan
    Swerea IVF AB, Argongatan 30, Mölndal SE-431 53, Sweden.
    Sveboda, Ales
    Luleå University of Technology, Division of Mechanics of Solid Materials Department of Engineering Sciences and Mathematics. Luleå SE-971 87, Sweden.
    Jonsén, Pärr
    Luleå University of Technology, Division of Mechanics of Solid Materials Department of Engineering Sciences and Mathematics. Luleå SE-971 87, Sweden.
    Experimental and PFEM-simulations of residual stresses from turning tests of a cylindrical Ti-6Al-4V shaft2018In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 71, p. 144-149Article in journal (Refereed)
    Abstract [en]

    Alloy Ti-6Al-4V is a frequently used material in aero space applications due the high strength and low weight. This material is however often considered as a difficult to machine alloy due to several material properties such as the inherent characteristics of high hot hardness and strength which is causing an increased deformation of the cutting tool during machining. The thermal properties also cause a low thermal diffusion from locally high temperatures in the cutting zone that allows for reaction to the tool material resulting in increased tool wear. Predicting the behavior of machining of this alloy is therefore essential when selecting machining tools or machining strategies. If the surface integrity is predicted, the influence of different machining parameters could be studied using Particle Finite Element (PFEM)-simulations. In this investigation the influence from cutting speed and feed during turning on the residual stresses has been measured using x-ray diffraction and compared to PFEM-simulations. The results showed that cutting speed and feed have great impact on the residual stress state. The measured cutting force showed a strong correlation especially to the cutting feed. The microstructure, observed in SEM, showed highly deformed grains at the surface from the impact of the turning operation and the full width half maximum from the XDR measurements distinguish a clear impact from different cutting speed and feed which differed most for the higher feed rate. The experimental measurements of the residual stresses and the PFEM simulations did however not correlate. The surface stresses as well as the sign of the residuals stresses differed which might be due to the material model used and the assumption of using a Coulomb friction model that might not represent the cutting conditions in the investigated case.

  • 209.
    Holmberg, Jonas
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Swerea IVF AB, Argongatan 30, 431 22 Mölndal, Sweden.
    Steuwer, Axel
    Nelson Mandela Metropolitan University, Gardham Avenue, 6031 Port Elizabeth, South Africa.
    Stormvinter, Albin
    Swerea IVF AB, Argongatan 30, 431 22 Mölndal, Sweden.
    Kristofferson, Hans
    Swerea IVF AB, Argongatan 30, 431 22 Mölndal, Sweden.
    Haakanen, Merja
    Stresstech OY, Tikkutehtaantie 1, 40 800 Vaajakoski, Finland.
    Berglund, Johan
    Swerea IVF AB, Argongatan 30, 431 22 Mölndal, Sweden.
    Residual stress state in an induction hardened steel bar determined by synchrotron- and neutron diffraction compared to results from lab-XRD2016In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 667, p. 199-207Article in journal (Refereed)
    Abstract [en]

    Induction hardening is a relatively rapid heat treatment method to increase mechanical properties of steel components. However, results from FE-simulation of the induction hardening process show that a tensile stress peak will build up in the transition zone in order to balance the high compressive stresses close to the surface. This tensile stress peak is located in the transition zone between the hardened zone and the core material. The main objective with this investigation has been to non-destructively validate the residual stress state throughout an induction hardened component. Thereby, allowing to experimentally confirming the existence and magnitude of the tensile stress peak arising from rapid heat treatment. For this purpose a cylindrical steel bar of grade C45 was induction hardened and characterised regarding the microstructure, hardness, hardening depth and residual stresses. This investigation shows that a combined measurement with synchrotron/neutron diffraction is well suited to non-destructively measure the strains through the steel bar of a diameter of 20 mm and thereby making it possible to calculate the residual stress profile. The result verified the high compressive stresses at the surface which rapidly changes to tensile stresses in the transition zone resulting in a large tensile stress peak. Measured stresses by conventional lab-XRD showed however that at depths below 1.5 mm the stresses were lower compared to the synchrotron and neutron data. This is believed to be an effect of stress relaxation from the layer removal. The FE-simulation predicts the depth of the tensile stress peak well but exaggerates the magnitude compared to the measured results by synchrotron/neutron measurements. This is an important knowledge when designing the component and the heat treatment process since this tensile stress peak will have great impact on the mechanical properties of the final component.

  • 210.
    Holmberg, Jonas
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Swerea-IVF AB, 431 22, Mölndal, Sweden.
    Wretland, Anders
    GKN Aerospace Engine Systems AB, Trollhättan, Sweden.
    Berglund, Johan
    Grit Blasting for Removal of Recast Layer from EDM Process on Inconel 718 Shaft: An Evaluation of Surface Integrity2016In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 25, no 12, p. 5540-5550Article in journal (Refereed)
    Abstract [en]

    The heat generated during EDM melts the work material and thereby allows large amounts to be removed,but an unfavorable surface of a recast layer (RCL) will also be created. This layer has entirely different properties compared to the bulk. Hence, it is of great interest to efficiently remove this layer and to verify that it has been removed. The main objective of this work has been to study the efficiency of grit blasting forremoval of RCL on an EDM aero space shaft. Additionally, x-ray fluorescence (XRF) has been evaluated asa nondestructive measurement to determine RCL presence. The results show that the grit-blasting processing parameters have strong influence on the ability to remove RCL and at the same time introduce beneficial compressive stresses even after short exposure time. Longer exposure will remove the RCL fromthe surface but also increase the risk that a larger amount of the blasting medium will get stuck into the surface. This investigation shows that a short exposure time in combination with a short grit-blasting nozzle distance is the most preferable process setting. It was further found that handheld XRF equipment can be used as a nondestructive measurement in order to evaluate the amount of RCL present on an EDM surface.This was realized by analyzing the residual elements from the EDM wire.

  • 211.
    Holmberg, Jonas
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Swerea-IVF AB, 431 22, Mölndal, Sweden.
    Wretland, Anders
    GKN Aerospace Engine Systems AB, Trollhättan, Sweden.
    Berglund, Johan
    Swerea IVF AB, Argongatan 30, 431 22 Mölndal, Sweden.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Evaluation of surface integrity after high energy machining with EDM, Laser Beam Machining and Abrasive Water Jet Machining of Alloy 7182019In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 100, no 5-8, p. 1575-1591Article in journal (Refereed)
    Abstract [en]

    Development of future aero engine components based on new design strategies utilising topological optimisation and additive manufacturing has in the past years become a reality. This allows for designs that involve geometries of "free form" surfaces and material combinations that could be difficult to machine using conventional milling. Hence, alternative manufacturing routes using non-conventional high energy methods are interesting to explore. In this investigation, the three high energy machining methods abrasive water jet machining (AWJM), electrical discharge machining (EDM) and laser beam machining (LBM) have been compared in terms of surface integrity to the reference, a ball nosed end milled surface. The results showed great influence on the surface integrity from the different machining methods. It was concluded that AWJM resulted in the highest quality regarding surface integrity properties with compressive residual stresses in the surface region and a low surface roughness with texture from the abrasive erosion. Further, it was shown that EDM resulted in shallow tensile residual stresses in the surface and an isotropic surface texture with higher surface roughness. However, even though both methods could be considered as possible alternatives to conventional milling they require post processing. The reason is that the surfaces need to be cleaned from either abrasive medium from AWJM or recast layer from EDM. It was further concluded that LBM should not be considered as an alternative in this case due to the deep detrimental impact from the machining process.Keywords

  • 212.
    Holmberg, Jonas
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Manufacturing Swerea IVF AB Mölndal Sweden.
    Wretland, Anders
    GKN Aerospace Sweden AB Trollhättan Sweden.
    Berglund, Johan
    Manufacturing Swerea IVF AB Mölndal Sweden.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Surface integrity after post processing of EDM processed Inconel 718 shaft2018In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 95, no 5-8, p. 2325-2337Article in journal (Refereed)
    Abstract [en]

    Electrical discharge machining (EDM) is considered as an efficient alternative to conventional material removal concepts that allows for much higher material removal rates. However, EDM generates unwanted features such as re-cast layer (RCL), tensile residual stresses and a rough surface. In order to recover the surface integrity, different post processes has been compared: high-pressure water jet (HPWJ), grit blasting (GB) and shot peening (SP). Surface integrity has been evaluated regarding microstructure, residual stresses, chemical content and surface roughness. The results showed that a combination of two post processes is required in order to restore an EDM processed surface of discontinuous islands of RCL. HPWJ was superior for removing RCL closely followed by grit blasting. However, grit blasting showed embedded grit blasting abrasive into the surface. Regarding surface roughness, it was shown that both grit blasting and HPWJ caused a roughening of the surface topography while shot peening generates a comparably smoother surface. All three post processes showed compressive residual stresses in the surface where shot peening generated the highest amplitude and penetration depths. However, the microstructure close to the surface revealed that shot peening had generated cracks parallel to the surface. The results strongly state how important it is to evaluate the surface at each of the different subsequent process steps in order to avoid initiation of cracks.

  • 213. Holmstrand, T
    et al.
    Mrdjanov, N.
    Barsoum, Z.
    Åstrand, Erik
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Fatigue life assessment of improved joints welded with alternative welding techniques2014In: Engineering Failure Analysis, ISSN 1350-6307, E-ISSN 1873-1961, Vol. 42, no July, p. 10-21Article in journal (Refereed)
    Abstract [en]

    In this study, the fatigue life improvement by adopting the toe weaving technique on nonload carrying cruciform welded joints has been investigated. Fatigue testing was conducted on two batches of specimens welded using double-pass manual welding. One batch had a straight second pass and the other was weaved. The influence of different weaving shape parameters was analyzed by performing crack growth analyses. The fatigue testing shows a slightly improved fatigue life for the two different batches compared to as-welded joints; the improvement is similar for both batches. The crack growth analysis concludes that the batch with the straight second pass should provide slightly higher fatigue life compared to the toe weaved batch. Measurements show a presence of undercuts in the vicinity of the crack initiation site. Nonetheless, an increased fatigue life is obtained, due to the low flank angle created during welding of the second pass, which reduces the stress concentration in the weld toe, prolonging the fatigue life.

  • 214.
    Hosseini, Seyed B.
    et al.
    Chalmers University of Technology, Department of Materials and Manufacturing Technology.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Production Engineering. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Johansson, S
    Lektronik, Ing.f:a, 424 49 Angered.
    Klement, Uta
    Chalmers University of Technology, Department of Materials and Manufacturing Technology.
    Kaminski, J
    Chalmers University of Technology, Department of Materials and Manufacturing Technology.
    Ryttberg, K.
    AB SKF, 415 50 Gothenburg.
    A Methodology for Temperature Correction When Using Two-Color Pyrometers: Compensation for Surface Topography and Material2014In: Experimental mechanics, ISSN 0014-4851, E-ISSN 1741-2765, Vol. 54, no 3, p. 369-377Article in journal (Refereed)
    Abstract [en]

    In this investigation, the applicability of the two-color pyrometer technique for temperature measurements in dry hard turning of AISI 52100 steel was studied, where both machined surfaces as well as cutting tools were considered. The impacts of differing hard turned surface topography on the two-color pyrometer readings was studied by conducting temperature measurements on reference samples created using cutting tools with different degrees of tool flank wear. In order to conduct measurements in a controlled environment, a specially designed furnace was developed in which the samples were heated step-wise up to 1,000 °C in a protective atmosphere. At each testing temperature, the temperatures measured by the two-color pyrometer were compared with temperatures recorded by thermocouples. For all materials and surfaces as studied here, the two-color pyrometer generally recorded significantly lower temperatures than the thermocouples; for the hard turned surfaces, depending on the surface topography, the temperatures were as much as 20 % lower and for the CBN cutting tools, 13 % lower. To be able to use the two-color pyrometer technique for temperature measurements in hard turning of AISI 52100 steel, a linear approximation function was determined resulting in three unique equations, one for each of the studied materials and surfaces. By using the developed approximation function, the measured cutting temperatures can be adjusted to compensate for differing materials or surface topographies for comparable machining conditions. Even though the proposed equations are unique for the hard turning conditions as studied here, the proposed methodology can be applied to determine the temperature compensation required for other surface topographies, as well as other materials. © 2013 Society for Experimental Mechanics.

  • 215.
    Hosseini, Vahid
    University West, Department of Engineering Science, Division of Welding Technology.
    Influence of multiple welding cycles on microstructure and corrosion resistance of a super duplex stainless steel2016Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Super duplex stainless steel (SDSS) has found a wide use in demanding applications such as offshore, chemical and petrochemical industries thanks to its excellent combination of mechanical properties and corrosion resistance. Welding of SDSS, however, is associated with the risk of precipitation of secondary phases and formation of excessive amounts of ferrite in the weld metal and heat affected zone. The present study was therefore aimed at gaining knowledge about the effect of multiple welding thermal cycles on the microstructure and possible sensitization to corrosion of welds in SDSS.Controlled and repeatable thermal cycles were produced by robotic welding. Oneto four autogenous TIG-remelting passes were applied on 2507 type SDSS plates using low or high heat inputs with pure argon as shielding gas. Thermal cycles were recorded using several thermocouples attached to the plates. Thermodynamic calculations and temperature field modelling were performed in order to understand the microstructural development and to predict the pitting corrosion resistance. Etching revealed the formation of different zones with characteristic microstructures: the fused weld zone (WZ) and the heat affected zone composed of the fusion boundary zone (FBZ), next to the fusion boundary, and further out Zone 1 (Z1) and Zone 2 (Z2). The WZ had a high content of ferrite and often nitrides which increased with increasing number of passes and decreasing heati nput. Nitrogen content of the WZ decreased from 0.28 wt.% to 0.17 wt.% after four passes of low heat input and to 0.10 wt.% after four passes of high heatinput. The FBZ was reheated to high peak temperatures (near melting point) and contained equiaxed ferrite grains with austenite and nitrides. Zone 1 was free from precipitates and the ferrite content was similar to that of the unaffected base material. Sigma phase precipitated only in zone 2, which was heated to peak temperatures in the range of approximately 828°C to 1028°C. The content of sigma phase increased with the number of passes and increasing heat input. 

    All locations, except Z1, were susceptible to local corrosion after multiplere heating. Thermodynamic calculations predicted that a post weld heat treatment could restore the corrosion resistance of the FBZ and Z2. However, the pitting resistance of the WZ cannot be improved significantly due to the nitrogen loss. Steady state and linear fitting approaches were therefore employed to predict nitrogen loss in autogenous TIG welding with argon as shielding gas. Two practical formulas were derived giving nitrogen loss as functions of initial nitrogen content and arc energy both predicting a larger loss for higher heat input and higher base material nitrogen content. A practical recommendation based on the present study is that it is beneficial to perform welding with a minimum number of passes even if this results in a higherheat input as multiple reheating strongly promotes formation of deleterious phases.

  • 216.
    Hosseini, Vahid
    University West, Department of Engineering Science, Division of Welding Technology.
    Super duplex stainless steels: Microstructure and propertiesof physically simulated base and weld metal2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    High-temperature processing and application of super duplex stainless steel(SDSS) are associated with the risk of changes in the ferrite/austenite balance and precipitation of secondary phases. This study was therefore aimed at improving knowledge about effects of thermal cycles on the microstructure and properties of SDSS base and weld metal. Controlled and repeatable thermal cycles were physically simulated using the innovative multiple TIG reheating/remelting and the arc heat treatment techniques. In the first technique, one to four autogenous TIG-remelting passes were applied. During arc heat treatment, a stationary arc was applied on a disc mounted on a water-cooled chamber thereby subjecting the material to a steady state temperature gradient from 0.5 minute to 600 minutes. Microstructures and properties were assessed and linked to thermal history through thermal cycle analysis, thermodynamic calculations and temperature field modelling, Remelting studies showed that nitrogen loss from the melt pool was a function of arc energy and initial nitrogen content and could cause highly ferritic microstructures. Heat affected zones were sensitized by nitride formation next to the fusion boundary and sigma phase precipitation in regions subjected to peak temperatures of 828-1028°C. Accumulated time in the critical temperature range, peak temperature and the number of thermal cycles are the most relevant criteria when evaluating the risk of sigma phase precipitation. Arc heat treatment produced graded microstructures in SDSS base and weld metal with the formation of a ferritic region at high temperature due to solid-state nitrogen loss, precipitation of sigma, chi, nitrides, and R-phase with different morphologies at 550-1010°C and spinodal decomposition below 500°C. This caused sensitization and/or increased hardness and embrittlement. Results were summarized as time-temperature-precipitation and properties diagrams for base and weld metal together with guidelines for processing and welding of SDSS.

  • 217.
    Hosseini, Vahid A.
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Aashuri, H.
    Materials Science and Engineering Dep., Sharif University of Technology, Tehran, Iran.
    Kokabi, A. H.
    Materials Science and Engineering Dep., Sharif University of Technology, Tehran, Iran.
    Study of the effect of tool geometry on semisolid stir welding of a AZ91 magnesium alloy2015In: Proceedings of the 18th International Conference on Joining Materials, JOM-Institute , 2015, p. 1-10Conference paper (Refereed)
    Abstract [en]

    Semisolid stir welding is a newly developed method suitable for joining of the magnesium alloy AZ91. In this study, the effect of tool geometries on the joint properties such as bending strength and the occurrence of porosity are studied. A 2 mm-thick Mg-25%Zn interlayer was placed between two AZ91 plates and the plate was heated up to 530°C before joining. At this temperature, when both the interlayer and the base metal were in the semisolid state, a stirrer was introduced into the joint. Drill-tip and round shape stirrer tools were employed at three different stirring rates. Welds produced with the two methods showed similar properties in the shear punch test. However, using the round tool geometry resulted in welds with excellent bending strength closely matching that of the base metal especially at the highest stirring rate. The improved properties when using the round tool was a result of the formation of a very fine and uniform microstructure with a low content of porosity.

  • 218.
    Hosseini, Vahid A.
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes. Innovatum AB, Trollhättan, Sweden.
    Valiente Bermejo, María Asunción
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Gårdstam, Johannes
    Swerea KIMAB AB, Kista, Sweden.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Influence of multiple thermal cycles on microstructure of heat-affected zone in TIG-welded super duplex stainless steel2016In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 60, no 2, p. 233-245Article in journal (Refereed)
    Abstract [en]

    The influence of heat input and multiple welding cycles on the microstructure of the heat-affected zone in autogenously TIG-welded 6 mm 2507 type super duplex stainless steel plates was investigated. In order to produce multiple thermal cycles, one to four pass bead-on-plate welds were made with arc energies of 0.47 and 1.08 kJ/mm, corresponding to heat inputs of 0.37 and 0.87 kJ/mm. Several thermocouples were attached to record thermal cycles on the front and back sides of the plates. Finite element modelling was successfully done to map and correlate measured and calculated peak temperatures. Only minor changes were seen in the ferrite content at 1 and 2 mm from the fusion boundary. Nitrides formed in all passes of the low heat input samples in a region next to the fusion boundary, but only after the third and fourth passes of the high heat input samples. Sigma phase precipitated only in a zone heated to a peak temperature in the range of approximately 828 to 1028 °C. Multiple reheating was found to promote precipitation of sigma phase relatively more than slower cooling. A precipitation free zone was observed between the nitride and sigma phase bands. The precipitation behaviour could be understood from equilibrium phase diagrams, evaluation of local thermal cycles and by correlating results from the modelling and measurements of peak temperatures. It is suggested that the peak temperature, the accumulated time in the critical temperature range between approximately 828 and 1028 °C, and the number of thermal cycles are the most relevant criteria when evaluating the risk of sigma phase formation.

  • 219.
    Hosseini, Vahid A.
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Wessman, Sten
    University West, Department of Engineering Science, Division of Manufacturing Processes. Swerea KIMAB AB, Kista, Sweden.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel2016In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 98, no May, p. 88-97Article in journal (Refereed)
    Abstract [en]

    Nitrogen loss is an important phenomenon in welding of super duplex stainless steels. In this study, a super duplex stainless steel was autogenously TIG-welded with one to four bead-on-plate passes with low or high heat inputs using pure argon shielding gas. The goal was to monitor nitrogen content and microstructure for each weld pass. Nitrogen content, measured by wavelength dispersive X-ray spectrometry, was after four passes reduced from 0.28 wt% in the base metal to 0.17 wt% and 0.10 wt% in low and high heat input samples, respectively. Nitrogen loss resulted in a more ferritic structure with larger grains and nitride precipitates. The ferrite grain width markedly increased with increasing number of passes and heat input. Ferrite content increased from 55% in base metal to 75% at low and 79% at high heat inputs after four passes. An increasing amount of nitrides were seen with increasing number of weld passes. An equation was suggested for calculation of the final nitrogen content of the weld metal as functions of initial nitrogen content and arc energy. Acceptable ferrite contents were seen for one or two passes. The recommendation is to use nitrogen in shielding gas and proper filler metals.

  • 220.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology. Innovatum AB, Trollhättan, Sweden.
    Aashuri, H.
    Sharif Univ Technol, Mat Sci & Engn Dept, Azadi Ave, Tehran, Iran.
    Kokabi, A. H.
    Sharif Univ Technol, Mat Sci & Engn Dept, Azadi Ave, Tehran, Iran.
    Effect of welding parameters on semisolid stir welding of Mg-9Al-1Zn magnesium alloy2016In: Transactions of Nonferrous Metals Society of China, ISSN 1003-6326, E-ISSN 2210-3384, Vol. 26, no 10, p. 2586-2594Article in journal (Refereed)
    Abstract [en]

    Semisolid stir welding of AZ91 was investigated with focus on the joining temperature and rotational speed. An Mg-25% Zn interlayer was located between two AZ91 pieces and the system was heated up to the semisolid state of base metal and interlayer. The weld seam was stirred using a drill-tip at different joining temperatures and rotational speeds. Optical and scanning electron microscopes were employed to study microstructure, cavity formation, and segregation. Hardness profile and shear punch test were also employed to rank the welds based on their quality and homogeneity. Results showed that the lowest cavity content (2.1%) with the maximum ultimate shear strength (about 188 MPa) was obtained in weld with the joining temperature of 530 degrees C and the rotational speed of 1600 r/min. Low quality welds and a reduction of ultimate shear strength were observed at very high or low rotational speeds and joining temperatures. The process, in conclusion, produced close mechanical properties to those of the base metal and homogenous quality throughout the joint, when the intermediate temperature and rotational speeds were employed.

  • 221.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Welding Technology.
    Eyzop, Daniel
    Outokumpu Stainless AB, Avesta Research Centre, Avesta, Sweden.
    Östberg, Agneta
    Sandvik Materials Technology, Sandviken, Sweden.
    Janiak, Paul
    Swerea KIMAB AB, Kista, Sweden.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Ferrite content measurement in super duplex stainless steel welds2019In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 63, no 2, p. 551-563Article in journal (Refereed)
    Abstract [en]

    Approaches to determining ferrite fraction (%) and ferrite number (FN) were examined for super duplex stainless steel (SDSS) welds. A reference sample was produced by bead-on-plate gas–tungsten arc welding of a type-2507 SDSS plate. By comparing different etchants and measurement practices, it was realized that etching with modified Beraha followed by computerized image analysis (IA) was the most accurate and quickest technique to measure ferrite fraction, which determined the same ferrite fraction (68.0 ± 2.6%) as that measured by electron diffraction backscattered analysis (67.6 ± 2.3%). A Round Robin test was performed on a reference sample at University West, Swerea KIMAB, Outokumpu Stainless, and Sandvik Materials Technology to investigate the repeatability of the technique. The ferrite fraction measurements performed at different laboratories showed very small variations, which were in the range of those seen when changing microscope in the same laboratory. After verification of the technique, the relationship between ferrite fraction and ferrite number (measured with FERITSCOPE®) was determined using 14 single (root) pass welds, including butt, corner, and T-, V-, and double V-joint geometries. The best-fit equation found in this study was ferrite number (FN) = 1.1 × ferrite fraction (%). To conclude, the ferrite fraction technique suggested in the present paper was accurate and repeatable, which made it possible to determine a ferrite fraction–ferrite number formula for SDSS single-pass welds.

  • 222.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Multipass Autogenous TIG Welding of Super Duplex Stainless2015In: 16th national conference of welding and inspection, Yazd, Iran: Proceedings, Yazd, 2015Conference paper (Refereed)
    Abstract [en]

    Multipass welding of super duplex stainless steels (SDSS) needs further characterization due to their growing applications inpetrochemical and offshore industries. This study, as a result, is aimed at investigating the effects of the number of passesand the arc energy on the microstructure and properties of 2507-type SDSS (UNS S32750). From one to four TIG weldpasses were autogenously applied on a plate using two different arc energies and with pure argon gas as the shielding gas.Chemical analysis showed increasing nitrogen loss with an increasing number of passes and increasing arc energy.Microstructural analyses revealed formation of nitrides in the weld metal and heat affected zone, and sigma phase at somedistance from the fusion boundary. Thermal cycle analysis in combination with Thermo-Calc calculations indicated thatexcessive reheating cause degradation of corrosion properties of multipass weldments, by reducing the pitting resistanceequivalent number of austenite to less than 40. Multipass welding resulted in a more ferritic weld metal microstructure and anincreased hardness.Recommendations, based on the present study, are as follows: 1) Corrosion attack can occur not only in the weld zone andnext to the fusion boundary, but also in a location at some distance from the fusion zone due to reheating in the sigma phaseformation temperature range. This should be considered in inspection procedures 2) Nitrogen loss degrades the mechanicaland corrosion properties of weldments even when welding with a low heat input. Using filler metals with higher nickelcontents and nitrogen containing shielding gases are therefore recommended. 3) It is often recommended to use a heat inputin the lower end of the recommended 0.3-1.5 kJ/mm range in multipass welding of super duplex stainless steels. However,welding with a higher heat input and fewer passes, in some cases, can decrease the risk of formation of secondary phases.

  • 223.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Högström, Mats
    University West, Department of Engineering Science, Division of Welding Technology.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Welding Technology.
    Valiente Bermejo, María Asunción
    University West, Department of Engineering Science, Division of Welding Technology.
    Stridh, Lars-Erik
    University West, Department of Engineering Science, Division of Welding Technology.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization2019In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 63, no 4, p. 975-987Article in journal (Refereed)
    Abstract [en]

    The evolution of microstructures with thermal cycles was studied for wire-arc additive manufacturing of duplex stainless steel blocks. To produce samples, arc energy of 0.5kJ/mm and interlayer temperature of 150 degrees C were used as low heat input-low interlayer temperature (LHLT) and arc energy of 0.8kJ/mm and interlayer temperature of 250 degrees C as high heat input-high interlayer temperature (HHHT). Thermal cycles were recorded with different thermocouples attached to the substrate as well as the built layers. The microstructure was analyzed using optical and scanning electron microscopy. The results showed that a similar geometry was produced with 14 layers4 beads in each layerfor LHLT and 15 layers3 beads in each layerfor HHHT. Although the number of reheating cycles was higher for LHLT, each layer was reheated for a shorter time at temperatures above 600 degrees C, compared with HHHT. A higher austenite fraction (+8%) was achieved for as-deposited LHLT beads, which experienced faster cooling between 1200 and 800 degrees C. The austenite fraction of the bulk of additively manufactured samples, reheated several times, was quite similar for LHLT and HHHT samples. A higher fraction of secondary phases was found in the HHHT sample due to longer reheating at a high temperature. In conclusion, an acceptable austenite fraction with a low fraction of secondary phases was obtained in the bulk of wire-arc additively manufactured duplex stainless steel samples (35-60%), where higher austenite fractions formed with a larger number of reheating cycles as well as longer reheating at high peak temperatures (800-1200 degrees C).

  • 224.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Physical and kinetic simulation of nitrogen loss in high temperature heat affected zone of duplex stainless steels2019In: Materialia, ISSN 2589-1529, Vol. 6, article id 100325Article in journal (Refereed)
    Abstract [en]

    High temperature heat affected zone (HTHAZ) of duplex stainless steels is prone to local corrosion attack due to a high ferrite fraction and nitride formation. Literature commonly attributes formation of this undesirable microstructure to rapid cooling from high peak temperatures. However, this study investigated the possible role of nitrogen loss in HTHAZ using a combination of physical and kinetics simulation. Applying a stationary gas-tungsten arc (GTA) on a water-cooled plate, a technique known as arc heat treatment, showed that considerable nitrogen loss occurred already after 0.5 min up to 150 µm from the fusion boundary. This zone was extended to 1300 µm after 600 min arc heat treatment. The results of bead-on-plate GTA welding and Gleeble testing replicating the thermal cycle in HTHAZ showed that the ferrite fraction of the real HTHAZ was 7% higher than that for Gleeble samples. This agrees with results from arc heat treatment, where ferrite fraction was found to increase due to nitrogen loss. Numerical and Dictra approaches were developed to simulate the kinetics of nitrogen loss in HTHAZ considering ferrite as the nitrogen rapid diffusion path towards the weld pool. Simulation showed good agreement with both welding and physical simulation. A combination of thermodynamic and kinetics simulations properly predicted the ferrite fraction at 1100 °C for different arc heat treatment times. In conclusion, the experiments (physical simulations and GTA welding) and kinetics simulation showed that nitrogen was lost from HTHAZ to the weld pool. © 2019 Acta Materialia Inc.

  • 225.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology. Innovatum AB., Trollhättan, Trollhättan, Sweden.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Engelberg, D.
    University of Manchester, School of Materials, M13 9PL, Manchester, United Kingdom.
    Wessman, Sten
    University West, Department of Engineering Science, Division of Welding Technology.
    Correction to: Time-temperature-precipitation and property diagrams for super duplex stainless steel weld metals (Welding in the World, (2018), 62, 3, (517-533), 10.1007/s40194-018-0548-z)2018In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 62, no 4, p. 893-Article in journal (Refereed)
    Abstract [en]

    Unfortunately due to typesetting mistakes, Tables 4-€“6 have been displayed erroneously in the article. © 2018, International Institute of Welding.

  • 226.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology. Innovatum AB.,Trollhättan, Trollhättan, Sweden.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Engelberg, Dirk
    The University of Manchester, School of Materials,Manchester,UK.
    Wessman, Sten
    University West, Department of Engineering Science, Division of Welding Technology.
    Time-temperature-precipitation and property diagrams for super duplex stainless steel weld metals2018In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 62, no 3, p. 517-533Article in journal (Refereed)
    Abstract [en]

    Super duplex stainless steel (SDSS) weld metal microstructures, covering the complete temperature range from ambient to liquidus, were produced by arc heat treatment for 1 and 10 min. Temperature modeling and thermodynamic calculations complemented microstructural studies, hardness mapping and sensitization testing. After 1 min, intermetallics such as sigma and chi phase had precipitated, resulting in moderate sensitization at 720–840 °C. After 10 min, larger amounts of intermetallics resulted in hardness up to 400 HV0.5 and more severe sensitization at 580–920 °C. Coarse and fine secondary austenite precipitated at high and low temperatures, respectively: The finer secondary austenite was more detrimental to corrosion resistance due to its lower content of Cr, Mo, and N as predicted by thermodynamic calculations. Increased hardness and etching response suggest that 475 °C embrittlement had occurred after 10 min. Results are summarized as time-temperature-precipitation and property diagrams for hardness and sensitization.

  • 227.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Welding Technology.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Engelberg, Dirk
    The University of Manchester, School of Materials, Manchester M13 9PL, UK.
    Roy, Matthew J.
    The University of Manchester, School of Mechanical, Aerospace and Civil Engineering,Manchester M13 9PL, UK.
    Kumara, Chamara
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    A novel arc heat treatment technique for producing graded microstructures through controlled temperature gradients2017In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 121, no May, p. 11-23Article in journal (Refereed)
    Abstract [en]

    This paper introduces a novel arc heat treatment technique to produce samples with graded microstructures through the application of controlled temperature gradients. Steady state temperature distributions within the sample can be achieved and maintained, for times ranging from a few seconds to several hours. The technique reduces the number of samples needed to characterize the response of a material to thermal treatments, and can consequently be used as a physical simulator for materials processing. The technique is suitable for conventional heat treatment analogues, welding simulations, multi-step heat treatments, and heat treatments with controlled heating and cooling rates. To demonstrate this technique, a super duplex stainless steel was treated with a stationary TIG arc, to confirm the relationship between generated steady-state temperature fields, microstructure development, hardness, and sensitization to corrosion. Metallographic imaging and hardness mapping provided information about graded microstructures, confirming the formation of secondary phases and microstructure sensitization in the temperature range 850–950 °C. Modelling of temperature distributions and thermodynamic calculations of phase stabilities were used to simulate microstructure development and associated welding cycles.

  • 228.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Wessman, Sten
    University West, Department of Engineering Science, Division of Welding Technology. Swerea KIMAB AB, P.O. Box 7047, Kista, Sweden.
    Fuertes, Nuria
    Swerea KIMAB AB, P.O. Box 7047, Kista, Sweden.
    Effect of sigma phase morphology on the degradation of properties in a super duplex stainless steel2018In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 11, no 6, article id 933Article in journal (Refereed)
    Abstract [en]

    Sigma phase is commonly considered to be the most deleterious secondary phase precipitating in duplex stainless steels, as it results in an extreme reduction of corrosion resistance and toughness. Previous studies have mainly focused on the kinetics of sigma phase precipitation and influences on properties and only a few works have studied the morphology of sigma phase and its influences on material properties. Therefore, the influence of sigma phase morphology on the degradation of corrosion resistance and mechanical properties of 2507 super duplex stainless steel (SDSS) was studied after 10 h of arc heat treatment using optical and scanning electron microscopy, electron backscattered diffraction analysis, corrosion testing, and thermodynamic calculations. A stationary arc was applied on the 2507 SDSS disc mounted on a water-cooled chamber, producing a steady-state temperature gradient covering the entire temperature range from room temperature to the melting point. Sigma phase was the major intermetallic precipitating between 630 °C and 1010 °C and its morphology changed from blocky to fine coral-shaped with decreasing aging temperature. At the same time, the average thickness of the precipitates decreased from 2.9 Όm to 0.5 Όm. The chemical composition of sigma was similar to that predicted by thermodynamic calculations when formed at 800-900 °C, but deviated at higher and lower temperatures. The formation of blocky sigma phase introduced local strain in the bulk of the primary austenite grains. However, the local strain was most pronounced in the secondary austenite grains next to the coral-shaped sigma phase precipitating at lower temperatures. Microstructures with blocky and coral-shaped sigma phase particles were prone to develop microscale cracks and local corrosion, respectively. Local corrosion occurred primarily in ferrite and in secondary austenite, which was predicted by thermodynamic calculations to have a low pitting resistance equivalent. To conclude, the influence of sigma phase morphology on the degradation of properties was summarized in two diagrams as functions of the level of static load and the severity of the corrosive environment. © 2018 by the authors.

  • 229.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology. Innovatum AB., Trollhättan, Trollhättan, Sweden.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Örnek, Cem
    KTH Royal Institute of Technology, Department of Chemical Science and Engineering, Division of Surface and Corrosion Science, Stockholm, Sweden, Department of Corrosion in Energy and Processing Industry, Swerea KIMAB AB, P.O. Box 7047, Kista, Sweden.
    Reccagni, Pierfranco
    The University of Manchester, School of Materials, Manchester, United Kingdom.
    Wessman, Sten
    University West, Department of Engineering Science, Division of Welding Technology.
    Engelberg, Dirk
    The University of Manchester, School of Materials, Manchester, United Kingdom.
    Microstructure and functionality of a uniquely graded super duplex stainless steel designed by a novel arc heat treatment method2018In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 139, p. 390-400Article in journal (Refereed)
    Abstract [en]

    A novel arc heat treatment technique was applied to design a uniquely graded super duplex stainless steel (SDSS), by subjecting a single sample to a steady state temperature gradient for 10 h. A new experimental approach was used to map precipitation in microstructure, covering aging temperatures of up to 1430 °C. The microstructure was characterized and functionality was evaluated via hardness mapping. Nitrogen depletion adjacent to the fusion boundary depressed the upper temperature limit for austenite formation and influenced the phase balance above 980 °C. Austenite/ferrite boundaries deviating from Kurdjumov–Sachs orientation relationship (OR) were preferred locations for precipitation of σ at 630–1000 °C, χ at 560–1000 °C, Cr2N at 600–900 °C and R between 550 °C and 700 °C. Precipitate morphology changed with decreasing temperature; from blocky to coral-shaped for σ, from discrete blocky to elongated particles for χ, and from polygonal to disc-shaped for R. Thermodynamic calculations of phase equilibria largely agreed with observations above 750 °C when considering nitrogen loss. Formation of intermetallic phases and 475 °C-embrittlement resulted in increased hardness. A schematic diagram, correlating information about phase contents, morphologies and hardness, as a function of exposure temperature, is introduced for evaluation of functionality of microstructures. © 2018 The Authors

  • 230.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Shabestari, S.G.
    Iran University of Science and Technology (IUST), Center of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgy and Materials Engineering, Narmak, Tehran, Iran.
    Study on the eutectic and post-eutectic reactions in LM13 aluminum alloy using cooling curve thermal analysis technique2016In: Journal of thermal analysis and calorimetry (Print), ISSN 1388-6150, E-ISSN 1588-2926, Vol. 124, no 2, p. 611-617Article in journal (Refereed)
    Abstract [en]

    Effect of non-equilibrium solidification conditions on the eutectic and post-eutectic reactions temperature and percentage of the phases were investigated using computer-aided cooling curve thermal analysis. In addition, hardness, secondary dendrite arm spacing, and maximum pore size were studied at different cooling conditions. Cooling curves were determined by setting thermocouples in the center of the molds. Solid fractions were calculated by Newtonian baseline technique. Results showed that increasing the cooling rate shifted the temperature of post-eutectic reaction upward, except final reaction. Higher cooling rate increased eutectic percentage about 4 %, but reduced total percentage of post-eutectic phases. Additionally, increasing the cooling rate shortened the maximum porosity diameter and secondary dendrite arm spacing and increased the hardness of the alloy. © 2015 Akadémiai Kiadó, Budapest, Hungary

  • 231.
    Hosseini, Vahid
    et al.
    University West, Department of Engineering Science, Division of Welding Technology. Innovatum AB Trollhättan,Trollhättan,Sweden.
    Thuvander, Mattias
    Chalmers University of Technology, Department of Physics, Gothenburg,Sweden.
    Wessman, Sten
    University West, Department of Engineering Science, Division of Welding Technology.
    Karlsson, Leif
    University West, Department of Engineering Science, Division of Welding Technology.
    Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal2018In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 49A, no 7, p. 2803-2816Article in journal (Refereed)
    Abstract [en]

    Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.

  • 232.
    Hurtig, Kjell
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Scotti, Americo
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    A critical analysis of weld heat input measurement through a water-cooled stationary anode calorimeter2015In: Proceedings of JOM 18 International conference on joining materials, Helsingör, Danmark, april 26-29, 2015, JOM-institute , 2015, p. 1-19Conference paper (Refereed)
    Abstract [en]

    A comprehensive model on heat transfer in welded plates is able to calculate the amount of heat losses from the surfaces. A model demands as input parameter the amount of heat delivered to the plate, independently of any loss (called here gross heat input for clarity). However, the great discrepancies among the results of calorimetric measurements have left many researchers skeptical about using this parameter in modeling as absolute term. The objective of this work was to assess the use of a water-cooled stationary anode calorimeter to obtain not only arc efficiency, but also gross heat input. A series of tests was carried out to determine the effect of current, material type and water flow rate on the calorimeter performance, as well as to evaluate some measures for reducing the calorimeter intrinsic errors. Finally, a sensitivity test was conducted to estimate the effect of measurement inaccuracies on the absorbed heat and arc efficiency values. The results showed that this calorimetric approach is a simple way for measuring gross heat inputs in arc welding. Nevertheless some improvement to reduce heat losses from the top surface and boost heat sinking from the opposite surface of the test coupon must be applied. This calorimeter is, on the other hand, highly sensitive to the parameter measurements, leading to errors up to ± 0.09 in arc efficiency determination if the instrument is not properly calibrated and installed.

  • 233.
    Hurtig, Kjell
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Choquet, Isabelle
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Scotti, Americo
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Production Engineering.
    A critical analysis of weld heat input measurement through a water-cooled stationary anode calorimeter2016In: Science and technology of welding and joining, ISSN 1362-1718, E-ISSN 1743-2936, Vol. 21, no 5, p. 339-350Article in journal (Refereed)
    Abstract [en]

    Comprehensive models of heat transfer require specification of the total amount of heat received by the workpiece. The objective of this work was to critically examine the use of a water-cooled stationary anode calorimeter to obtain both arc efficiency and total heat input into the workpiece. For simplicity and clarity, this last quantity is called the gross heat input. The effects of current, material type and water flow rate on the calorimeter performance were determined experimentally. Some measures for reducing errors in calorimetry were evaluated. Improvements were made to reduce heat losses from the top surface of the test coupon and boost heat removal from the opposite surface. A sensitivity test was conducted to estimate the effect of measurement inaccuracies. The results demonstrate the effectiveness of calorimetry for measuring gross heat input in arc welding.

  • 234.
    Islavath, Nanaji
    et al.
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India; School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India.
    Das, Dibakar
    School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Ramasamy, Easwaramoorthi
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
    Seed layer-assisted low temperature solution growth of 3D ZnO nanowall architecture for hybrid solar cells2017In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 116, p. 219-226Article in journal (Refereed)
    Abstract [en]

    Aligned metal oxide nanostructures carry electrons efficiently, and are therefore ideal building blocks for next-generation optoelectronic devices. Herein, we report the seed-layer-assisted low-temperature solution growth of aligned 3D ZnO nanowall architecture on arbitrary substrates. By introducing a controlled amount of Al into a seed-layer, the morphology of ZnO nanostructure is gradually changed from nanowire to 3D nanowalls. Time-dependent growth experiments suggest that hydroxyl-ions present in growth solution react with Al to form Al(OH)4 which in turn binds to the positively charged Zn2 +surface and partially blocking ZnO growth along the (0001) direction and promoting lateral growth. Such aligned 3D ZnO nanowall architecture, with the unique combination of high surface-area and cage-like pores, grown on seed-layer coated transparent conductive substrate is found to be beneficial for electron transporting material (ETM) in perovskite solar cells and a maximum photocurrent density (JSC) of 7.5 mA.cm− 2 and a power conversion efficiency (η) of 2.4% are demonstrated. Our facile approach readily allows further growth of ZnO nanowires on 3D ZnO nanowall surface; thereby improving the perovskite-ZnO interface and increasing the JSC and η to 9.7 and 3.3%, respectively. This 3D ZnO nanowall-nanowire architecture opens up a novel configuration for designing high-performance optoelectronic devices.

  • 235.
    Islavath, Nanaji
    et al.
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
    Saroja, S.
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
    Reddy, K Srinivas
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
    Harikesh, P.C.
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
    Veerappan, G.
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
    Ramasamy, Easwaramoorthi
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India.
    Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells2017In: Journal of Energy Chemistry, ISSN 2095-4956, Vol. 26, no 3, p. 584-591Article in journal (Refereed)
    Abstract [en]

    High-efficiency perovskite solar cells (PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere, which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology. In this work, we have systematically studied the feasibility of all-ambient-processing of PSCs and evaluated their photovoltaic performance. It has been shown that phase-pure crystalline tetragonal MAPbI3 perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process, undermining the need for dry atmosphere and post-annealing. All-ambient-processed PSCs with a configuration of FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au achieve open-circuit voltage (990 mV) and short-circuit current density (20.31 mA/cm2) comparable to those of best reported glove-box processed devices. Nevertheless, device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25. Dark current–voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMeTAD species, resulting in high series-resistance and decreased fill-factor. The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor, copper thiocyanate, as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%. The present findings can have important implications in industrially viable fabrication of large-area PSCs.

    The poor conductivity of ambient-processed spiro-OMeTAD HTM layer caused by lack of oxidation is identified as a major performance limiting factor and successfully overcome by replacing with stable inorganic CuSCN.

  • 236.
    Jacobsson, J
    et al.
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden; Research and Technology Department, GKN Aerospace Engine Systems, Trollhättan, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Brederholm, Anssi
    Aalto University School of Engineering, Helsinki, Finland.
    Hänninen, Hannu
    Aalto University School of Engineering, Helsinki, Finland.
    Weldability of Ni-Based Superalloys Waspaloy® and Haynes® 282®: A Study Performed with Varestraint Testing2016In: Research & Reviews: Journal of Material Sciences, ISSN 2347-2278, Vol. 4, no 4, p. 3-11Article in journal (Refereed)
    Abstract [en]

    There is a need for materials with high strength, oxidation resistance, thermal stability and adequate weldability in order to facilitate the production of large structural jet engine components. Therefore, the weldability of Waspaloy® and Haynes® 282® have been evaluated using the Varestraint weldability test. The experiments reveal that Waspaloy® has a higher susceptibility to hot cracking compared to Haynes® 282®. This conclusion is supported by increased total crack length (10 mm or more) and larger brittle temperature range (approx. 65°C) for Waspaloy® when compared to Haynes® 282® in Varestraint and Gleeble hot ductility tests, respectively. The cracking in Haynes® 282® seems to be connected with a secondary phase which presumably can be associated with Ti-Mo based MC-type carbide observed in the fusion zone. Also, a surrounding segregated area is present near this secondary phase as well as along the grain boundaries. Furthermore, micro-Vickers hardness results revealed more or less the same weld metal hardness (260- 280 HV) but a difference in the base metal hardness. The weld metal hardness of Waspaloy® was lower than that of the base metal hardness, while Haynes® 282® had a higher hardness in comparison.

  • 237.
    Jacobsson, Jonny
    et al.
    Chalmers University of Technology in the Department of Industrial and Material Science, Gothenburg, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Brederholm, Anssi
    Aalto University in Helsinki, Department of Engineering Design and Production, Finland.
    Hänninen, Hannu
    Aalto University, Department of Engineering Design and Production, Aalto University, Finland.
    Weldability of superalloys alloy 718 and ATI® 718Plus™: A study performed by Varestraint testing2017In: Materialprüfung (München), ISSN 0025-5300, E-ISSN 2195-8572, Vol. 59, no 9, p. 769-773Article in journal (Refereed)
    Abstract [en]

    In this study, the old and well-known alloy 718 is compared with the newly developed ATI® 718Plus™ from the weldability point of view. This is done in order to gain new information that have not been documented and established yet among the high-temperature materials with high strength, oxidation resistance, thermal stability and sufficient weldability, yet. ATI® 718Plus™ shows a lower sensitivity to hot cracking than alloy 718 with approximately 10 mm total crack length (TCL) difference in Varestraint testing. In the solution-annealed condition at 982°C for 4.5 h followed by air cooling, the crack sensitivity is decreased as compared to the mill-annealed condition. Along the crack path and also ahead of the crack tip, γ-Laves eutectic is present in both alloys. The microhardness measurements showed similar hardness level of 250 HV in the weld metal of both alloys and even in the parent material of alloy 718. ATI® 718Plus™ parent metal had hardness of 380 HV and a small increase of less than 50 HV was observed for both studied alloys in the heat affected zone (HAZ). For the same grain size of ATI® 718Plus™ (8.3 μm) and alloy 718 (15.6 μm), the susceptibility to liquation cracking may increase with increasing grain size. With a small grain size, there is a possibility to accommodate more trace elements (B, S, P) due to the larger grain boundary area. The impurity elements were found in relatively small precipitates, typically borides (0.2 μm), phosphides (0.1 to 0.5 μm) and carbo-sulphides. The solidification sequence of alloy 718 and ATI® 718Plus™ is relatively similar, where the liquid starts to solidify as γ-phase followed by γ/MC reaction at about 1260 °C and then final γ/Laves eutectic reaction at around 1150 °C. Detailed knowledge about weldability of alloy 718 and ATI® 718Plus™ can be used for material selection.

  • 238.
    Jacobsson, Jonny
    et al.
    Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden / Research and Technology Department, GKN Aerospace Engine Systems, Trollhättan, Sweden.
    Andersson, Joel
    University West, Department of Engineering Science, Division of Welding Technology.
    Brederholm, Anssi
    Aalto University School of Engineering, Helsinki, Finland.
    Hänninen, Hannu
    Aalto University School of Engineering, Helsinki, Finland.
    Weldability Study of Superalloys Waspaloy® and Haynes® 282®2016In: 10th International Conference on Trends in Welding Research & 9th International Welding Symposium of Japan Welding Society (9WS), October 11-14, 2016, Tokyo, Japan: Proceedings, 2016, p. 325-328Conference paper (Other academic)
    Abstract [en]

    The weldability of Waspaloy® and Haynes® 282® have been evaluated using the Varestraint weldability test. The experiments reveal that Waspaloy® has a higher susceptibility to hot cracking compared to Haynes® 282®. This conclusion is supported by increased total crack length (10 mm or more) for Waspaloy® when compared to Haynes® 282® in Varestraint test. The cracking in Haynes® 282® seems to be connected with a secondary phase which presumably can be associated with Ti-Mo based MC-type carbide observed in the fusion zone. Also, a surrounding segregated area is present near this secondary phase as well as along the grain boundaries. Furthermore, micro-Vickers hardness results revealed more or less the same weld metal hardness (260-280 HV) but a difference in the base metal hardness. The weld metal hardness of Waspaloy® was lower than that of the base metal hardness, while Haynes® 282® had a higher hardness in comparison.

  • 239.
    Jafari, R.
    et al.
    Tarbiat Modares University, Department of Material Science and Engineering, Tehran, 14115, Iran.
    Sadeghimeresht, Esmaeil
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Shahrabi Farahani, T.
    Tarbiat Modares University, Department of Material Science and Engineering, Tehran, 14115, Iran.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    KCI-induced corrosion behavior of HVAF-sprayed Ni-based coatings in ambient air2017In: Proceedings of the International Thermal Spray Conference & Exposition (ITSC 2017), Curran Associates, Inc. , 2017, Vol. 2, p. 946-950Conference paper (Refereed)
    Abstract [en]

    It is well known that the presence of KCl deposited on superheater tubes in biomass- and waste-fired boilers leads to a severe corrosion and premature damage. In order to protect such critical components which are routinely exposed to aggressive environments, thermal spray coatings are frequently proposed as a potential solution. By virtue of the techno-commercial benefits that provides as a direct outcome of its ability to cost-effectively deposit coatings virtually free of porosity and in situ formed oxides, the high velocity air-fuel (HVAF) process offers a particularly attractive approach. In the present work, the influence of KCl on the oxidation behavior of four HVAF-sprayed Ni-based coatings (Ni21Cr, Ni5AI, Ni21Cr7AI1Y, and Ni21Cr9Mo) has been investigated. The coatings were deposited onto specimens of 16Mo3 steel, a widely used boiler tube material. High temperature corrosion tests were carried out in ambient air at 600°C, with 0.1 mg/cm2 KCl being sprayed onto the samples prior to the exposure. Uncoated substrates and an identical test environment without KCl were used as reference. SEM/EDS and XRD techniques were utilized to characterize the as-sprayed and exposed samples. The results showed that the small addition of KCl significantly accelerated damage to the coatings. It was further revealed that the alumina-forming NiAl coating was capable of forming a more protective oxide scale compared to other chromia and mixed-oxide scale forming coatings. In general, the oxidation resistance of the coatings based on the kinetic studies had the following ranking (from the best to the worst): NiAl >NiCr> NiCrAlY> NiCrMo. © Copyright 2017 by DVS Media GmbH. All rights reserved.

  • 240.
    Jafari, R.
    et al.
    Department of Material Science and Engineering, Tarbiat Modares University, Tehran, Iran.
    Sadeghimeresht, Esmaeil
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Shahrabi Farahani, T.
    Department of Material Science and Engineering, Tarbiat Modares University, Tehran, Iran .
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    KCl-induced corrosion behavior of HVAF-sprayed Ni-based coatings in ambient air2017Conference paper (Other academic)
  • 241.
    Jafari, Reza
    et al.
    Tarbiat Modares University, Department of Material Science and Engineering, Tehran, Iran.
    Sadeghimeresht, Esmaeil
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Shahrabi Farahani, Taghi
    Tarbiat Modares University, Department of Material Science and Engineering, Tehran, Iran.
    Huhtakangas, Matti
    M. H. Engineering AB, Karlskoga, Sweden .
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    KCl-Induced High Temperature Corrosion Behavior of HVAF-Sprayed Ni-Based Coatings in Ambient Air2018In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 27, no 3, p. 500-511Article in journal (Refereed)
    Abstract [en]

    KCl-induced high temperature corrosion behavior of four HVAF-sprayed Ni-based coatings (Ni21Cr, Ni5Al, Ni21Cr7Al1Y, and Ni21Cr9Mo) under KCl deposit has been investigated in ambient air at 600°C up to 168h. The coatings were deposited onto 16Mo3 steel - a widely used boiler tube material.Uncoated substrate, 304L and Sanicro25 were used as reference materials in the test environment.SEM/EDS and XRD techniques were utilized to characterize the as-sprayed and exposed samples.The results showed that the small addition of KCl significantly accelerated degradation to the coatings. All coatings provided better corrosion resistance compared to the reference materials. The alumina-forming Ni5Al coating under KCl deposit was capable of forming a more protective oxide scale compared to the chromia-forming coatings as penetration of Cl through diffusion paths was hindered. Both active corrosion and chromate formation mechanisms were found to be responsible for Page 1 of 23ASM the corrosion damages. The corrosion resistance of the coatings based on the microstructure analysis and kinetics had the following ranking (from the best to worst): Ni5Al >Ni21Cr> Ni21Cr7Al1Y>Ni21Cr9Mo.

  • 242.
    Javidi Shirvan, Alireza
    University West, Department of Engineering Science, Division of Welding Technology.
    Modelling of cathode-plasma interaction in short high-intensity electric arc: Application to Gas Tungsten Arc Welding2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In arc welding the quality of the weld is strongly influenced by the thermal history of the workpiece which is itself governed by the electric arc heat source. The models for predicting weld properties thus need a good evaluation of the distribution of the heat input from thearc to the workpiece. To have a predictive model of arc heat source it is necessary to take into account the cathode and its coupling with the plasma. The coupling allows to calculate the temperature and current density distributions along the cathode surface rather than prescribing them. This thesis focuses on the arc-cathode coupling for a plasma assumed to be in local thermal equilibrium. A self-consistent coupling boundary model for high-intensity electric arc on a refractory cathode (thoriated tungsten) was developed accounting for the physics of the sub-layers of the cathode layer and the non-uniformity of the cathode surface physical state. The cathode layer model accounts for the non-equilibria in the cathode layer. It was tested in one-dimensional calculations and then extended to a cathode-plasma coupling boundary condition for gas tungsten arc implemented in OpenFOAM. Different modelling assumptions commonly used for developing the model were questioned and investigated. It was checked that the secondary electron emission is negligible compared to the effect of emitted electrons and ions. It was verified that it is justified to neglect the space charge of emitted electron when calculating the cathode surface electric field. It was verified that Richardson-Dushman electron emission law supplemented with Schottky correction is used within its domain of validity in GTA applications even for low work function emitters. It was shown that the radiative absorption of the cathode surface is not negligible compared to the radiative emission. The cathode layer model was also further developed to take into account the in homogeneity of the cathode material. It was shown that the cathode in homogeneityhas a significant effect on the size of the arc attachment and consequently on the cathode surface and the plasma temperature. Good agreement was obtained with the measured cathode surface and plasma temperatures without imposing any adjustable parameters. The results showed that the proposed model, which is only based on physical principles, is ableto predict the trends observed experimentally.

  • 243.
    Javidi Shirvan, Alireza
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Modelling of Electric Arc Welding: arc-electrode coupling2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Arc welding still requires deeper process understanding and more accurateprediction of the heat transferred to the base metal. This can be provided by CFD modelling.Most works done to model arc discharge using CFD consider the arc corealone. Arc core simulation requires applying extrapolated experimental data asboundary conditions on the electrodes. This limits the applicability. To become independent of experimental input the electrodes need to be included in the arcmodel. The most critical part is then the interface layer between the electrodesand the arc core. This interface is complex and non-uniform, with specific physicalphenomena.The present work reviews the concepts of plasma and arc discharges that areuseful for this problem. The main sub-regions of the model are described, andtheir dominant physical roles are discussed.The coupled arc-electrode model is developed in different steps. First couplingsolid and fluid regions for a simpler problem without complex couplinginterface. This is applied to a laser welding problem using the CFD softwareOpenFOAM. The second step is the modelling of the interface layer betweencathode and arc, or cathode layer. Different modelling approaches available inthe literature are studied to determine their advantages and drawbacks. One ofthem developed by Cayla is used and further improved so as to satisfy the basicprinciples of charge and energy conservation in the different regions of thecathode layer. A numerical procedure is presented. The model, implementedin MATLAB, is tested for different arc core and cathode conditions. The maincharacteristics calculated with the interface layer model are in good agreementwith the reference literature. The future step will be the implementation of theinterface layer model in OpenFOAM.

  • 244.
    Javidi Shirvan, Alireza
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Choquet, Isabelle
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    A review of cathode-arc coupling modeling in GTAW2016In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 60, no 4, p. 821-835Article in journal (Refereed)
    Abstract [en]

    Material properties of welds are strongly influenced by the thermal history, including the thermo-fluid and electromagnetic phenomena in the weld pool and the arc heat source. A necessary condition for arc heat source models to be predictive is to include the plasma column, the cathode, and the cathode layer providing their thermal and electric coupling. Different cathode layer models based on significantly different physical assumptions are being used. This paper summarizes today’s state of the art of cathode layer modeling of refractory cathodes used in GTAW at atmospheric pressure. The fundamentals of the cathode layer and its physics are addressed. The main modeling approaches, namely (i) the diffusion approach, (ii) the partial LTE approach, and (iii) the hydrodynamic approach are discussed and compared. The most relevant publications are systematically categorized with regard to the respective physical phenomena addressed. Results and process understanding gained with these models are summarized. Finally, some open questions are underlined.

  • 245.
    Javidi Shirvan, Alireza
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nilsson, Håkan
    Chalmers University of Technology.
    Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode2016In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 49, no 3 November 2016, p. 1-17, article id 485201Article in journal (Other academic)
    Abstract [en]

    Various models coupling the refractory cathode, the cathode sheath and the arc at atmospheric pressure exist. They assume a homogeneous cathode with a uniform physical state, and differ by the cathode layer and the plasma arc model. However even the most advanced of these models still fail in predicting the extent of the arc attachment when applied to short high-intensity arcs such as gas tungsten arcs. Cathodes operating in these conditions present a non-uniform physical state. A model taking into account the first level of this non-homogeneity is proposed based on physical criteria. Calculations are done for 5 mm argon arcs with a thoriated tungsten cathode. The results obtained show that radiative heating and cooling of the cathode surface are of the same order. They also show that cathode inhomogeneity has a significant effect on the arc attachment, the arc temperature and pressure. When changing the arc current (100 A, 200 A) the proposed model allows predicting trends observed experimentally that cannot be captured by the homogeneous cathode model unless restricting a priori the size of the arc attachment. The cathode physics is thus an important element to include to obtain a comprehensive and predictive arc model

  • 246.
    Javidi Shirvan, Alireza
    et al.
    University West, Department of Engineering Science, Divison of Natural Sciences, Surveying and Mechanical Engineering.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nilsson, Håkan
    Chalmers University of Technology.
    Modelling of electrode-arc coupling in electric arc welding2014In: Proceedings of The 6th International Swedish Production Symposium 2014 16-18 September 2014 / [ed] Johan Stahre, Björn Johansson,Mats Björkman, 2014, p. 1-8Conference paper (Refereed)
    Abstract [en]

    Modelling of the arc in electric arc welding is significant to achieve a better pro-cess understanding, thus gain better weld quality and a more efficient production process.It requires knowing the conditions at the surfaces of the anode and cathode. These condi-tions are very difficult to set from measurements and should be calculated. This requiresmodelling the complex physics of the electrode layer coupling electrode and arc. Thispaper presents a self-consistent electrode layer model that 1) is suited to welding applica-tions, 2) accounts for the known physics taking place, and 3) satisfies the basic conservationrequirements. The model is tested for different conditions. Its potentiality for welding ap-plications is shown through calculations coupling plasma arc, electrode and cathode layermodels. The calculations are done for both tungsten and thoriated tungsten electrode.

  • 247.
    Javidi Shirvan, Alireza
    et al.
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Mechanical Engineering. University West, Department of Engineering Science, Division of Welding Technology.
    Nilsson, Håkan
    Chalmers University of technology, Applied Mechanics.
    Numerical modelling of shielding gas flow and heat transfer in laser welding process2012In: Proceedings of the 5th International Swedish Production Symposium, SPS12 / [ed] The Swedish Production Academy on October 2012, Linköping, 2012, , p. 7p. 1-7Conference paper (Refereed)
    Abstract [en]

    In the present work a three-dimensional model has been developed to study shieldinggas flow and heat transfer in a laser welding process using computational fluid dynamics.This investigation was motivated by problems met while using an optical system totrack the weld path. The aim of this study was to investigate if the shielding gas flowcould disturb the observation area of the optical system. The model combines heatconduction in the solid work piece and thermal flow in the fluid region occupied by theshielding gas. These two regions are coupled through their energy equations so asto allow heat transfer between solid and fluid region. Laser heating was modelled byimposing a volumetric heat source, moving along the welding path. The model wasimplemented in the open source software OpenFOAM and applied to argon shieldinggas and titanium alloy Ti6Al4V base metal. Test cases were done to investigate theshielding gas flow produced by two components: a pipe allowing shielding the melt,and a plate allowing shielding the weld while it cools down. The simulation results confirmedthat these two components do provide an efficient shielding. They also showedthat a significant amount of shielding gas flows towards the observation area of the opticalsystem intended to track the weld path. This is not desired since it could transportsmoke that would disturb the optical signal. The design of the shielding system thusneeds to be modified.

  • 248.
    Javidi Shirvan, Alireza
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Nilsson, Håkan
    Chalmers University of Technology, Department of Mechanics and Maritime Sciences, 412 96 Gothenburg, Sweden.
    Jasak, Hrvoje
    University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, 10 000 Zagreb, Croatia.
    Coupling boundary condition for high-intensity electric arc attached on a non-homogeneous refractory cathode2018In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 222, p. 31-45Article in journal (Refereed)
    Abstract [en]

    The boundarycoupling high-intensity electricarc and refractory cathode is characterized bythree sub- layers: the cathode sheath,the Knudsen layerand the pre-sheath. A self-consistent coupling boundarycondition accounting for these three sub-layers is presented; its novel propertyis to take into account a non-uniform distribution of electronemitters on the surface of the refractory cathode. This non- uniformity is due to cathode non-homogeneity induced by arcing.The computational model is appliedto a one-dimensional test case to evaluate the validity of different modelingassumptions. It is also applied coupling a thoriated tungstencathode with an argon plasma(assumed to be in local thermal equilibrium) to compare the calculation results with uniform and non-uniform distribution of the electron emitters to experimental measurements. The resultsshow that the non-uniformity of the electronemitters’ distribution has a significant effect on the calculated properties. It leads to good agreementwith the cathode surfacetemperature, and with the plasmatemperature in the hottest region.Some differences are observedin colder plasmaregions, where deviation from local thermalequilibrium is known to occur.

  • 249.
    Javidi Shirvan, Alireza
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nilsson, Håkan
    Chalmers University of Technology.
    Jasak, Hrvoje
    Chalmers University of Technology.
    Coupling boundary condition for high-intensity electricarc attached on a non-homogeneous refractory cathode2016In: Article in journal (Other academic)
  • 250.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Numerical modelling of the compression behaviour of single-crystalline MAX-phase materials2010In: Advanced materials research, ISSN 1022-6680, Vol. 89-91, p. 262-267Article in journal (Refereed)
    Abstract [en]

    In this article a numerical model to describe the mechanical behaviour of nanophased singlecrystalline Ti3SiC2 is proposed. The approach is a two dimensional finite element periodic unit cell consisting of an elastic matrix interlayered with shear deformable slip planes which obey the Hill's yield criterion. The periodic unit cell is used to predict compression material behaviour of Ti3SiC2 crystals with arbitrary slip plane orientations. Stress strain relationships are derived for Ti 3SiC2, and the effect of slip plane volume fraction as well as orientation of the slip planes are investigated. The two main deformation mechanisms of the material namely; ordinary slip and so called kinking are considered in the study.

2345678 201 - 250 of 575
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf