Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chatzigiannakou, Maria Angeliki
    et al.
    Uppsala University, Dept. of Electrical Engineering, Uppsala, Sweden.
    Potapenko, Tatiana
    Uppsala University, Dept. of Electrical Engineering, Uppsala, Sweden.
    Ekergård, Boel
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik.
    Temiz, Irina
    Uppsala University, Dept. of Electrical Engineering, Uppsala, Sweden.
    Numerical analysis of an Uppsala University WEC deployment by a barge for different sea states2020Inngår i: Ocean Engineering, ISSN 0029-8018, E-ISSN 1873-5258, Vol. 205, artikkel-id 107287Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Wave energy converters (WECs) have been deployed onshore, nearshore, and offshore to convert ocean wave movement into electricity. The exploitation of renewable energy sources has restrictions; in the case of wave energy, high installation, maintenance, and decommissioning costs have limited their commercial use. Moreover, these offshore operations can be compromised by safety issues. This paper draws attention to offshore operation safety of a WEC developed by Uppsala University. Specifically, this paper investigates what sea states are suitable for the safe deployment of a WEC from a barge. This study follows recommendations in DNV-RP-H103 for analysis of offshore operations, namely lifting through the wave zone. ANSYS Aqwa is used to find hydrodynamic forces acting on a typical barge, using frequency domain analysis. Based on these hydrodynamic simulation results and methodology given in DNV-RP-H103, tables are created to show the sea states that would allow for the safe installation of a WEC using a typical barge. Considered sea states have significant wave heights varying between 0 m and 3 m and the wave zero crossing periods varying between 3 s and 13 s. The WEC submersions are considered between 0 m and 7 m, i.e. when the WEC is in the air until it is fully submerged. © 2020 Elsevier Ltd

  • 2.
    Danyang, Cui
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik. Department of Electrical Engineering Uppsala University Uppsala; Department of Engineering Science, University West, Trollhättan (SWE).
    Max, Lena
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik.
    Boström, Cecilia
    Department of Electrical Engineering Uppsala University Uppsala (SWE).
    Ekergård, Boel
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik.
    Design of Spoke Type Traction Motor with Ferrite Material for EV Application2022Inngår i: 2022 International Conference on Electrical Machines (ICEM): Proceedings 5-8 Sept. 2022, Institute of Electrical and Electronics Engineers (IEEE), 2022, s. 315-320Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Motor design for electric vehicle application using non-rare-earth permanent magnetic materials has become a research hotspot due to cost reduction and environmental issues. Among different motor topologies, permanent magnet synchronous motor (PMSM) with spoke-type ferrite magnets has great potential because of its competitive performance. In this paper, a novel design of a spoke-type synchronous motor using ferrite Y40 and non-magnetic steel material is presented, with optimizations on the overall structure and considerations on the effects of pole numbers. The performance of the designed motor verified with magnetic simulations shows that it has a high probability to be a candidate for replacing the conventional PMSM with rare-earth materials in Electric Vehicles (EV) application. © 2022 IEEE.

  • 3.
    Ekergård, Boel
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik.
    Leijon, Mats
    Department of Engineering Sciences, Uppsala University, Uppsala, Sweden.
    Eddy Current Losses in Solid Pole Shoes in a Two-Pole Permanent Magnet Motor2021Inngår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 13, nr 10, s. 536-543Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    The aim of this paper is to present the eddy current losses in solid pole shoes in a permanent magnet two-pole electric motor. In the presented paper, the authors have chosen to work with three different analytical models, Carter’s theory, Gibb’s theory and Lawrenson’s theory, each with different degree of accuracy and simplifications. The results from the analytical models all present relatively low eddy current losses, giving the designer valuable arguments to utilize solid pole shoes, as a rotor with solid poles is from a construction point of view a more suitable choice, increasing the mechanical stability and reducing the production cost, compared to the laminated design.

  • 4.
    Ekergård, Boel
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik.
    Leijon, Mats
    Uppsala University, Swedish Centre for Renewable Electric Energy Conversion, Department on Engineering Sciences, Uppsala, 751 21, Sweden; Chalmers University of Technology, Department of Electrical Engineering, Gothenburg, 412 96, Sweden .
    Longitudinal end effects in a linear wave power generator2020Inngår i: Energies, E-ISSN 1996-1073, Vol. 13, nr 2, artikkel-id 327Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Even though the magnetic circuit of a linear electric machine is very similar to a rotating electric machine, they diverge in one fundamental property. The linear generator is open in both ends, i.e., the magnetic circuit is non-symmetric. This paper investigates and discusses the drawbacks of this non-symmetric design in a linear permanent magnet generator, installed in a wave energy conversion system. A two-dimensional geometry has been utilized for the numerical calculations in a finite element method simulation tool. The results present an increased cogging force and significant core losses in the translator as consequences of the longitudinal ends in the machine. © 2020 by the authors.

    Fulltekst (pdf)
    fulltext
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf