Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Fasth, Angelica
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylen, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Choi, W.B.
    Center for Thermal Spray Research, Stony Brook, NY, USA.
    Microindentation and Inverse Analysis to Characterize Elastic-Plastic Properties for Thermal Sprayed Ti2AlC and NiCoCrAlY2009In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 18, no 2, p. 194-200Article in journal (Refereed)
    Abstract [en]

    Elastic-plastic material properties for HVOF sprayed Ti2AlC (sprayed with Maxthal 211 powder) and plasma sprayed NiCoCrAlY coatings were investigated using modeling and experimental Berkovich microindentation. Optical microstructure evaluations were also performed. The theories of Hertz, Oliver and Pharr were combined with finite element analysis for extracting the material properties. Empirically based material models for both thermal sprayed Ti2AlC and NiCoCrAlY coatings are proposed.

  • 2.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Fasth, Angelica
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Choi, W. B.
    Center for Thermal Spray Research, Stony Brook, NY, United States.
    Microindentation and inverse analysis to characterize elastic-plastic properties for thermal sprayed Ti2AlC and NiCoCrAlY2009In: Surface Modification Technologies XXII: Proceedings of the 22nd International Conference on Surface Modification Technologies SMT22 / [ed] T.S. Sudarshan & Per Nylen, VALAR Docs , 2009, Vol. 18, no 2, p. 177-186Conference paper (Refereed)
  • 3.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Numerical modelling of the compression behaviour of single-crystalline MAX-phase materials2010In: Advanced materials research, ISSN 1022-6680, Vol. 89-91, p. 262-267Article in journal (Refereed)
    Abstract [en]

    In this article a numerical model to describe the mechanical behaviour of nanophased singlecrystalline Ti3SiC2 is proposed. The approach is a two dimensional finite element periodic unit cell consisting of an elastic matrix interlayered with shear deformable slip planes which obey the Hill's yield criterion. The periodic unit cell is used to predict compression material behaviour of Ti3SiC2 crystals with arbitrary slip plane orientations. Stress strain relationships are derived for Ti 3SiC2, and the effect of slip plane volume fraction as well as orientation of the slip planes are investigated. The two main deformation mechanisms of the material namely; ordinary slip and so called kinking are considered in the study.

  • 4.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Object-oriented finite element analysis to simulate microindentation of thermal sprayed MAX-phase coatings2009In: Proceedings - 2009 International Conference on Computer Modeling and Simulation, ICCMS 2009, 2009, p. 337-341Conference paper (Other (popular science, discussion, etc.))
  • 5.
    Markocsan, Nicolaie
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Manitsas, Dimosthenis
    University West, Department of Engineering Science, Division of Welding Technology.
    Jiang, Janna
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Björklund, Stefan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    MAX-phase coatings produced by thermal spraying2017In: Journal of Superhard Materials, ISSN 1063-4576, Vol. 39, no 5, p. 355-364Article in journal (Refereed)
    Abstract [en]

    This paper presents a comparative study on the Ti2AlC coatings produced by different thermal spray methods, as Ti2AlC is one of the most studied materials from the MAX-phase family. Microstructural analysis of coatings produced by High Velocity Air Fuel (HVAF), Cold Spray and High Velocity Oxygen Fuel (HVOF) has been carried out by means of the scanning electron microscopy equipped with an energy dispersive spectrometer (EDS). The volume fraction of porosity was determined using the ASTM standard E562. The phase characterization of the as-received powder and as-sprayed coatings was conducted using the X-ray diffraction with CrKα radiation. Impact of the spray parameters on the porosity and the mechanical properties of the coatings are discussed. The results show that the spraying temperature and velocity play a crucial role in coatings characteristics. © 2017, Allerton Press, Inc.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf