Change search
Refine search result
12 1 - 50 of 98
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Choquet, Isabelle
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Numerical and Experimental Study of Ni-Particle Impact On A Ti-Surface2007In: Proceedings of the International Thermal Spray Conference: May 2007, Beijing, China, ASM International , 2007, 219-224 p.Conference paper (Refereed)
  • 2.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    On-Line measurement of plasma-sprayed ni-particles during impact on a ti-surface: influence of surface oxidation2007In: Journal of thermal spray technology (Print), ISSN 1059-9630, Vol. 16, no 6, 506-511 p.Article in journal (Refereed)
    Abstract [en]

    The objective of this study was to analyze the impact of plasma-sprayed Ni5%Al particles on polished and grit-blasted Ti6Al4V samples under oxidized and nonoxidized conditions. For this purpose, measurements of thermal radiation and velocity of individual plasma-sprayed particles were carried out. From the thermal radiation at impact, splat diameter during flattening and temperature evolution during cooling were evaluated. Characteristic parameters related to the quality of contact between the splat and the substrate were retrieved. The flattening speed was introduced to characterize wetting, while the cooling rate was used to characterize solidification. The idea was to get a signature of particle impact for a given surface roughness and oxidation state by identifying parameters which strongly affect the splat behavior. Sieved Ni5%Al powder in a narrow range (+65 −75 μm) was sprayed on four sets of titanium alloy surfaces, consisting of polished and grit-blasted samples, one set had a nonoxidized surface and the other one was oxidized in an oven at 600 °C for two hours. Resulting splats after impact were characterized by scanning electron microscopy, the splats on oxidized surface showed pores in their core and detached fingers at the periphery. The cooling rate and flattening degree significantly increased on the oxidized smooth surface compared to the nonoxidized one. This trend was not found in grit-blasted surfaces, which implies that impact phenomena are different on grit-blasted surfaces than on smooth surfaces thus further work is needed.

  • 3.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    On-Line Measurement of Plasma-Sprayed Ni-Particles during Impact on a Ti-Surface: influence of Surface Oxidation2007In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 16, no 4, 506-511 p.Article in journal (Refereed)
    Abstract [en]

    The objective of this study was to analyze the impact of plasma-sprayed Ni5%Al particles on polished and grit-blasted Ti6Al4V samples under oxidized and nonoxidized conditions. For this purpose, measurements of thermal radiation and velocity of individual plasma-sprayed particles were carried out. From the thermal radiation at impact, splat diameter during flattening and temperature evolution during cooling were evaluated. Characteristic parameters related to the quality of contact between the splat and the substrate were retrieved. The flattening speed was introduced to characterize wetting, while the cooling rate was used to characterize solidification. The idea was to get a signature of particle impact for a given surface roughness and oxidation state by identifying parameters which strongly affect the splat behavior. Sieved Ni5%Al powder in a narrow range (+65 −75 μm) was sprayed on four sets of titanium alloy surfaces, consisting of polished and grit-blasted samples, one set had a nonoxidized surface and the other one was oxidized in an oven at 600 °C for two hours. Resulting splats after impact were characterized by scanning electron microscopy, the splats on oxidized surface showed pores in their core and detached fingers at the periphery. The cooling rate and flattening degree significantly increased on the oxidized smooth surface compared to the nonoxidized one. This trend was not found in grit-blasted surfaces, which implies that impact phenomena are different on grit-blasted surfaces than on smooth surfaces thus further work is needed.

  • 4.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Relationship between surface topgraphy parameters and adhesion strength for plasma spraying2005In: ITSC 2005: Thermal Spray connects: Explore its surfacing potential!, The Material Information Society , 2005, 1027-1031 p.Conference paper (Refereed)
    Abstract [en]

    To achieve sufficient adhesion strength within thermal spraying, the surface to be coated has to be modified. Grit blasting is the most common way to generate a clean and roughened surface. The bonding mechanism between the grit-blasted substrate and the coating is assumed to be due to mechanical anchoring, why an optimal surface roughness is essential. The surface roughness is usually evaluated using Ra which cannot fully characterize the complex nature of the chaotic substrate topography. This study was performed in order to evaluate if Ra can be replaced by other surface characteristic parameters such us R.q, Rpk, Rpv, Rk…with higher correlation to adhesion strength. Average roughness was measured by a perthometer and with white light interferometry to get 3D images of the surface topography. Disc shaped substrate samples of Ti6Al4V (AMS 4928) were grit blasted with aluminium oxide grit and plasma sprayed with a Ni5%Al coating. Adhesion strength was determined according to the ASTM C633 standard. The correlation between a number of different surface-parameters and adhesion strength were evaluated and compared with Ra.

  • 5.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Two-step grit blasting for enhanced adhesion of thermal spray coatings2004In: Surface modification technologies XVIII: proceedings of the eighteenth international conference on surface modification technologies held in Dijon, France November 15-17, 2004, 2004, 23-27 p.Conference paper (Refereed)
  • 6.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Barbezat, G.
    Sulzer Metco, Wohlen, Switzerland .
    A parameter study of the Protal® Process to optimise the adhesion of Ni5Al Coatings2004In: Thermal Spray 2004 : Advances in technology and applications: Proceedings of the International Thermal Spray Conference 10-12 May 2004, Osaka, Japan Thermal Spray 2004, 2004, 898-902 p.Conference paper (Refereed)
    Abstract [en]

    The Protal process combines surface preparation using a laser and thermal spraying in one production step. The laser preparation is based on a photomechanical reaction induced by the interaction between a laser of high instantaneous power and a polluted surface. The mechanism of bonding and the coating-substrate interface are then changed in comparison with grit blasting resulting in a significantly reduced substrate roughness. This study is aimed at finding the optimal Protal process parameters for the coating adhesion of a Ni5%Al sprayed on Ti6Al4V and IN718 alloys. The parameters investigated are laser beam intensity, the time delay between the laser impact and the spray impact, powder feed rate, substrate roughness and temperature. A test plan including these parameters is analysed by means of a fractional factorial design of experiment method. The adhesions of the coatings are measured using the ASTM C633 standard test. Data are analysed by a multiple linear regression model using a least squares fit. In addition, the coating/substrate interface is examined by optical and electron scanning microscopy (SEM) techniques as well as by Auger electron spectroscopy. Substrate roughness, substrate temperature and laser intensity are all shown to have a negative correlation with adhesion strength within the investigated range. Areas of diffusion are noticed at the coating/substrate interface.

  • 7.
    Bahbou, M. Fouzi
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Wigren, J.
    Volvo Aero, Trollhättan.
    Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating2004In: Journal of thermal spray technology (Print), ISSN 1059-9630, Vol. 13, no 4, 508-514 p.Article in journal (Refereed)
  • 8.
    Bolelli, G.
    et al.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria “Enzo Ferrari”, Via Pietro Vivarelli 10/1, I-41125 Modena (MO), Italy.
    Berger, L. -M
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, D-01277 Dresden, Germany.
    Börner, T.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria “Enzo Ferrari”, Via Pietro Vivarelli 10/1, I-41125 Modena (MO), Italy.
    Koivuluoto, H.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, FI-33720 Tampere, Finland.
    Lusvarghi, L.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria “Enzo Ferrari”, Via Pietro Vivarelli 10/1, I-41125 Modena (MO), Italy.
    Lyphout, Christophe
    University West, Department of Engineering Science, Division of Production Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Matikainen, V.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, FI-33720 Tampere, Finland.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Sassatelli, P.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria “Enzo Ferrari”, Via Pietro Vivarelli 10/1, I-41125 Modena (MO), Italy.
    Trache, R.
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, D-01277 Dresden, Germany.
    Vuoristo, P.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, FI-33720 Tampere, Finland.
    Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatings: A comparative assessment2015In: Surface and Coatings Technology, ISSN 0257-8972, Vol. 265, 125-144 p.Article in journal (Refereed)
    Abstract [en]

    his paper provides a comprehensive assessment of the sliding and abrasive wear behaviour of WC–10Co4Cr hardmetal coatings, representative of the existing state-of-the-art. A commercial feedstock powder with two different particle size distributions was sprayed onto carbon steel substrates using two HVOF and two HVAF spray processes.Mild wear rates of < 10-7 mm3/(Nm) and friction coefficients of ≈ 0.5 were obtained for all samples in ball-on-disk sliding wear tests at room temperature against Al2O3 counterparts. WC–10Co4Cr coatings definitely outperform a reference electrolytic hard chromium coating under these test conditions. Their wear mechanisms include extrusion and removal of the binder matrix, with the formation of a wavy surface morphology, and brittle cracking. The balance of such phenomena is closely related to intra-lamellar features, and rather independent of those properties (e.g. indentation fracture toughness, elastic modulus) which mainly reflect large-scale inter-lamellar cohesion, as quantitatively confirmed by a principal component analysis. Intra-lamellar dissolution of WC into the matrix indeed increases the incidence of brittle cracking, resulting in slightly higher wear rates. At 400 °C, some of the hardmetal coatings fail because of the superposition between tensile residual stresses and thermal expansion mismatch stresses (due to the difference between the thermal expansion coefficients of the steel substrate and of the hardmetal coating). Those which do not fail, on account of lower residual stresses, exhibit higher wear rates than at room temperature, due to oxidation of the WC grains.The resistance of the coatings against abrasive wear, assessed by dry sand–rubber wheel testing, is related to inter-lamellar cohesion, as proven by a principal component analysis of the collected dataset. Therefore, coatings deposited from coarse feedstock powders suffer higher wear loss than those obtained from fine powders, as brittle inter-lamellar detachment is caused by their weaker interparticle cohesion, witnessed by their systematically lower fracture toughness as well.

  • 9.
    Bolelli, G.
    et al.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria 'Enzo Ferrari', Via P. Vivarelli 10/1, Modena, MO, Italy .
    Berger, L.-M.
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, Dresden, Germany.
    Börner, T.
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, Dresden, Germany.
    Koivuluoto, H.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, Tampere, Finland .
    Matikainen, V.
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, Tampere, Finland .
    Lusvarghi, L.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria 'Enzo Ferrari', Via P. Vivarelli 10/1, Modena, MO, Italy .
    Lyphout, Christophe
    University West, Department of Engineering Science, Division of Production Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Sassatelli, P.
    University of Modena and Reggio Emilia, Dipartimento di Ingegneria 'Enzo Ferrari', Via P. Vivarelli 10/1, Modena, MO, Italy .
    Trache, R.
    Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, Dresden, Germany .
    Vuoristo, P.c
    Tampere University of Technology, Department of Materials Science, Korkeakoulunkatu 6, Tampere, Finlan.
    Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2-NiCr hardmetal coatings2016In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 358-359, 32-50 p.Article in journal (Refereed)
    Abstract [en]

    This paper provides a comprehensive characterisation of HVOF- and HVAF-sprayed Cr3C2–25 wt.% NiCr hardmetal coatings. One commercial powder composition with two different particle size distributions was processed using five HVOF and HVAF thermal spray systems.All coatings contain less Cr3C2 than the feedstock powder, possibly due to the rebound of some Cr3C2-rich particles during high-velocity impact onto the substrate.Dry sand-rubber wheel abrasive wear testing causes both grooving and pull-out of splat fragments. Mass losses depend on inter- and intra-lamellar cohesion, being higher (≥70 mg after a wear distance of 5904 m) for the coatings deposited with the coarser feedstock powder or with one type of HVAF torch.Sliding wear at room temperature against alumina involves shallower abrasive grooving, small-scale delamination and carbide pull-outs, and it is controlled by intra-lamellar cohesion. The coatings obtained from the fine feedstock powder exhibit the lowest wear rates (≈5x10−6 mm3/(Nm)). At 400 °C, abrasive grooving dominates the sliding wear behaviour; wear rates increase by one order of magnitude but friction coefficients decrease from ≈0.7 to ≈0.5. The thermal expansion coefficient of the coatings (11.08x10−6 °C−1 in the 30–400 °C range) is sufficiently close to that of the steel substrate (14.23x10−6 °C−1) to avoid macro-cracking

  • 10.
    Chen, Y.
    et al.
    University of Manchester, School of Materials, Manchester, United Kingdom.
    Zhao, X.
    Shanghai Jiao Tong University, Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai, China .
    Dang, Y.
    University of Manchester, School of Materials, Manchester, United Kingdom.
    Xiao, Ping
    University of Manchester, School of Materials, Manchester, United Kingdom.
    Curry, Nicholas
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 94, 1-14 p.Article in journal (Refereed)
    Abstract [en]

    The residual stresses in a NiCoCrAlY bond coat deposited on a Ni-base superalloy substrate after oxidation at 1150 °C were studied by X-ray diffraction using the sin2Ψ technique. The stresses were found to be tensile; they first increased and then decreased with oxidation time. High temperature stress measurement indicated that the stress developed and built up upon cooling, predominantly within the temperature range from 1150 °C to 600 °C. Microstructural examination suggested that, due to the limited penetration depth into the bond coat, the X-ray only probed the stress in a thin surface layer consisting of the single γ-phase formed through Al depletion during oxidation. Quantitative high temperature X-ray diffraction analysis revealed that, above 600 °C, the volume fraction of the β-phase in the bond coat increased with decreasing temperature. The mechanisms of stress generation in the bond coat were examined and are discussed based on the experiments designed to isolate the contribution of possible stress generation factors. It was found that the measured bond coat stresses were mainly induced by the volume change of the bond coat associated with the precipitation of the β-phase upon cooling.

  • 11.
    Choquet, Isabelle
    et al.
    University West, Department of Technology, Mathematics and Computer Science.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Wigren, J
    Deposition Rate Increase in APS Processes by Means of Multiple Injection Ports2004In: Thermal Spray 2004: Advances in Technology and Application: Proceedings of the International Thermal Spray Conference 10–12 May 2004, Osaka, Japan, 2004, 691-695 p.Conference paper (Other academic)
  • 12.
    Clement, C.
    et al.
    National School of Engineers, University of Limoges, Limoges, 87280, France.
    Sadeghimeresht, Esmaeil
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Lyphout, Christophe
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Corrosion behavior of HVAF- and HVOF-sprayed high-chromium Fe-based coatings2015Conference paper (Refereed)
    Abstract [en]

    Fe-based coatings with three particular elemental compositions and two different powder particle size were prepared by high-velocity air fuel (HVAF) and high-velocity oxy fuel (HVOF) techniques. The corrosion behavior of which were comparatively studied in 3.5 wt.% NaCl solution. The results indicated that the coatings produced by HVAF process exhibited denser structure with lower porosity. Polarization and electrochemical impedance spectroscopy (EIS) tests indicated that the HVAF coatings provided better corrosion resistance than the HVOF coatings. The presence of defects was significant in HVOF coatings. The investigation illustrated that the corrosion paths initiated and grow through defects of the coating. Furthermore, adding Cr strongly improved the corrosion resistance of the coatings. The results confirmed that the cheap HVAF process could be a potential alternative to HVOF to fabricate Fe-based coatings for industrial applications.

  • 13.
    Curry, Nicholas
    et al.
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Tang, Zhaolin
    Northwest Mettech Corp., Vancouver, Canada.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings - Thermal and Lifetime Performance2015In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 268, no April, 15-23 p.Article in journal (Refereed)
  • 14.
    Ericsson, Mikael
    et al.
    University West, Department of Technology, Mathematics and Computer Science. University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Berglund, D.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science. University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Three Dimensional Simulation of Robot path, Heat Transfer and Residual Stresses of a TIG-welded Part with Complex Geometry2002In: Trends in Welding Research: Proceedings of the 6th International Conference: Phoenix, AZ, 15-19 April, 2002, 2002, 973-978 p.Conference paper (Other academic)
    Abstract [en]

    In this paper a system is presented that combines a robot off-line programming software with a finite element model that predicts temperature-time histories and residual stress distributions. The objective is to develop a tool for the engineer where robot trajectories and welding process parameters can be optimized on parts with complex geometry. The system was evaluated on a stainless steel gas turbine component. Robot weld paths were defined off-line and automatically downloaded to the finite element program, where transient temperatures and residual stresses were predicted. Temperature dependent properties and phase change, were included in the analysis. Assumptions and principles behind the modeling techniques are presented together with predicted temperature histories, residual stresses, and fixture forces.

  • 15.
    Ericsson, Mikael
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Bolmsjö, Gunnar
    University West, Department of Engineering Science, Division of Automation Systems.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Three-dimensional simulation of robot path and heat transfer of a TIG-welded part with complex geometry2002In: 11th International Conferences on Computer Technology in Welding: Colombus, Ohio December 6-7, 2001, 2002, 309-316 p.Conference paper (Other academic)
    Abstract [en]

    The application of commercial software (OLP) packages for robot simulation, and programming, use interactive computer graphics, provide powerful tools for creating welding paths off-line. By the use of such software, problems of robot reach, accessibility, collision and timing can be eliminated during the planning stage. This paper describes how such software can be integrated with a numerical model that predicts temperature-time histories in the solid material. The objective of this integration is to develop a tool for the engineer where robot trajectories and process parameters can be optimized on parts with complex geometry. Such a tool would decrease the number of weld trials, increase productivity and reduce costs. Assumptions and principles behind the modeling techniques are presented together with experimental evaluation of the correlation between modeled and measured temperatures.

  • 16.
    Ericsson, Mikael
    et al.
    University West, Department of Technology, Mathematics and Computer Science.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science.
    A look at the optimization of robot welding speed based on process modelling2007In: Welding Journal, ISSN 0043-2296, Vol. 86, no 8, 238-244 p.Article in journal (Refereed)
    Abstract [en]

    Simulation tools to search for optimal process parameters are of great interest to reduce the number of experiments and thereby reduce cost and production time. In this paper, robot simulation has been used in combination with finite element simulations to optimize robot speed in order to minimize distortion while keeping complete joint penetration. In an earlier work performed by the authors, a finite element model was developed to predict heat transfer and residual stresses of parts with complex shapes. An interface between a robot simulation model and a finite element analysis model was also constructed. In this paper, an iterative method for robot speed optimization has been developed using MATLAB. The algorithm is designed to maintain complete joint penetration while maximizing productivity by utilizing the fastest weld speed. The method makes it possible to optimize the heat input to the component and thereby minimize component deformation for parts with complex shapes. The system was evaluated on stainless steel plates with varying thicknesses. Robot weld paths were defined off line and automatically downloaded to the finite element software where the optimization was performed. Simulations and experimental validations are presented.

  • 17.
    Ericsson, Mikael
    et al.
    University West, Department of Technology, Mathematics and Computer Science.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science.
    Berglund, D.
    Ling-Peng, R.
    Three dimensional simulation of robot path, heat transfer and residual stresses of a welded part with complex geometry2005In: International jourrnal for the joining of materials, ISSN 0905-6866, Vol. 17, no 2, 42-51 p.Article in journal (Refereed)
    Abstract [en]

    In this article a simulation system is presented that combines computer aided robotics software used to define the welding operation, with a finite element model that predicts temperature-time histories and residual stress distributions for welding applications. The objective is to develop a tool for engineering processes in which robot trajectories and welding process parameters can be optimized off-line on parts with complex geometries. The system was evaluated on a stainless steel gas turbine component. Temperature dependent properties and phase change were included in the analysis. The turbine component was welded using an in-house TIG welding cell. The assumptions and principles that underpin the modeling techniques are presented together with predicted temperature histories, residual stresses, and fixture forces. Predicted residual stresses were compared with neutron diffraction measurements.

  • 18.
    Ericsson, Mikael
    et al.
    University West, Department of Technology, Mathematics and Computer Science.
    Nylén, Per
    University West, Department of Technology, Mathematics and Computer Science.
    Danielsson, Fredrik
    University West, Department of Technology, Mathematics and Computer Science.
    Carlsson, Henrik
    University West, Department of Technology, Mathematics and Computer Science.
    Off-line programming of robots for metal deposition2005In: Trends in welding research: Proceedings of the 7th international conference, May 16-20. Pine Mountain, Georgia, 2005, 629-634 p.Conference paper (Other academic)
    Abstract [en]

    Metal Deposition (MD) is a rapid prototyping technique to build parts by depositing metal in a required fashion. When a complex-shaped part is to be built, a simulation tool is needed to define robot trajectories. Three different simulation-based methods for robot trajectory generation are introduced and compared in this study. The methods are; reversed milling, adapted rapid prototyping and application programming in a computer aided robotics software. All methods were shown capable of creating robot paths for complex shapes, with the CAR software approach being the most flexible. Using this method, the geometry to be built is automatically sliced into layers and a robot path is automatically generated. The method was tentatively evaluated and appears to provide a powerful technique in the design and optimisation of robot paths for MD. Experiments showed that it is possible to manufacture fully dense parts using an Nd-Yag laser.

     

  • 19.
    Eriksson, Robert
    et al.
    Siemens AG, Large Gas Turbines, Huttenstr. 12, 10553, Berlin, Germany.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Broitman, Esteban
    Linköping University. IFM, 58183, Linköping, Sweden.
    Jonnalagadda, Krishna Praveen
    Linköping University, IEI, 58183, Linköping, Sweden.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Lin Peng, Ru
    Linköping University, IEI, 58183, Linköping, Sweden.
    Stresses and Cracking During Chromia-Spinel-NiO Cluster Formation in TBC Systems2015In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 24, no 6, 1002-1014 p.Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBC) are used in gas turbines to reduce the temperatures in the underlying substrate. There are several mechanisms that may cause the TBC to fail; one of them is cracking in the coating interface due to extensive oxidation. In the present study, the role of so called chromia-spinel-NiO (CSN) clusters in TBC failure was studied. Such clusters have previously been found to be prone to cracking. Finite element modeling was performed on a CSN cluster to find out at which stage of its formation it cracks and what the driving mechanisms of cracking are. The geometry of a cluster was obtained from micrographs and modeled as close as possible. Nanoindentation was performed on the cluster to get the correct Young’s moduli. The volumetric expansion associated with the formation of NiO was also included. It was found that the cracking of the CSN clusters is likely to occur during its last stage of formation as the last Ni-rich core oxidizes. Furthermore, it was shown that the volumetric expansion associated with the oxidation only plays a minor role and that the main reason for cracking is the high coefficient of thermal expansion of NiO. © 2015 ASM International

  • 20. Eriksson, Robert
    et al.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Broitman, Esteban
    Linköping University.
    Jonnalagadda, Krishna Praveen
    Linköping University.
    Nylén, Per
    University West, Department of Engineering Science, Research Environment Production Technology West.
    Peng, Ru Lin
    Linköping University.
    Stress and Cracking during Chromia-Spinel-NiO Cluster Formation in Thermal Barrier Coating Systems2015In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 24, no 6, 1002-1014 p.Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBC) are used in gas turbines to reduce the temperatures in the underlying substrate. There are several mechanisms that may cause the TBC to fail; one of them is cracking in the coating interface due to extensive oxidation. In the present study, the role of so called chromia-spinel-NiO (CSN) clusters in TBC failure was studied. Such clusters have previously been found to be prone to cracking. Finite element modeling was performed on a CSN cluster to find out at which stage of its formation it cracks and what the driving mechanisms of cracking are. The geometry of a cluster was obtained from micrographs and modeled as close as possible. Nanoindentation was performed on the cluster to get the correct Young's moduli. The volumetric expansion associated with the formation of NiO was also included. It was found that the cracking of the CSN clusters is likely to occur during its last stage of formation as the last Ni-rich core oxidizes. Furthermore, it was shown that the volumetric expansion associated with the oxidation only plays a minor role and that the main reason for cracking is the high coefficient of thermal expansion of NiO.

  • 21.
    Fasth, Angelica
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylen, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Choi, B.
    Center for Theraml Spray Research, Stony Brook, New York.
    Klement, Uta
    Chalmers University.
    A Comparative studey of Mechanical Properties Between HVOF-spryed Maxphase Materials and Plasma Sprayed MCrAIY Coatings2009In: Surface Modification Technologies XXII: Proceedings of the Twenty Second International Conference on Surface Modification Technologies Held at University West, Trollhättan, Sweden September 22-24 2008 / [ed] T.S. Sudarshan & Per Nylen, VALAR Docs , 2009, 149-156 p.Conference paper (Other academic)
  • 22.
    Fasth, Angelica
    et al.
    University West, Department of Engineering Science.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science.
    Musalek, Radek
    Characterization of thermo-mechanical properties for thermal sprayed NiCoCrAlY coatings2010In: Proceedings of the Thermal Spray: Global Solutions for Future Application (ITSC 2010) Conference: Singapore, May 3-5, 2010, 2010, 431-435 p.Conference paper (Refereed)
  • 23.
    Ganvir, Ashish
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Curry, Nicholas
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Björklund, Stefan
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)2015In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 24, no 7, 1195-1204 p.Article in journal (Refereed)
    Abstract [en]

    The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower. © 2015 ASM International

  • 24.
    Ganvir, Ashish
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Curry, Nicholas
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Joshi, Shrikant
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Vilemova, Monika
    IPP.
    Pala, Zdenek
    IPP.
    Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings2016In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 25, no 1-2, 202-212 p.Article in journal (Refereed)
    Abstract [en]

    Suspension plasma spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings (TBCs) and enables production of coatings with a variety of structures—highly dense, highly porous, segmented, or columnar. This work investigates suspension plasma-sprayed TBCs produced using axial injection with different process parameters. The influence of coating microstructure on thermal properties was of specific interest. Tests carried out included microstructural analysis, phase analysis, determination of porosity, and pore size distribution, as well as thermal diffusivity/conductivity measurements. Results showed that axial suspension plasma spraying process makes it possible to produce various columnar-type coatings under different processing conditions. Significant influence of microstructural features on thermal properties of the coatings was noted. In particular, the process parameter-dependent microstructural attributes, such as porosity, column density, and crystallite size, were shown to govern the thermal diffusivity and thermal conductivity of the coating.

  • 25.
    Ganvir, Ashish
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Curry, Nicholas
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nylén, Per
    University West, Department of Engineering Science, Research Environment Production Technology West.
    Toma, Filofteia-Laura
    Fraunhofer Institute for Material and Beam Technology, Dresden, Germany.
    Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings2015In: Surface and Coatings Technology, ISSN 0257-8972, Vol. 268, 70-76 p.Article in journal (Refereed)
    Abstract [en]

    Suspension Thermal Spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings. This technique enables the production of much different performance thermal barrier coatings than conventional thermal spraying which uses solid powder as a feedstock material. In this work a comparative study is performed on four different types of thermal barrier coatings sprayed with two different thermal spay processes, suspension high velocity oxy-fuel spraying (SHVOF) and suspension plasma spraying (SPS) using two different water-based suspensions. Tests carried out include microstructural analysis with SEM, porosity analysis using weight difference by water infiltration, thermal conductivity measurements using laser flash analysis and lifetime assessment using thermo-cyclic fatigue tests. The results showed that SPS coatings were much porous and hence showed lower thermal conductivity than SHVOF coatings produced with the same suspension. From the thermo-cycling tests it was observed that the SPS coatings showed a higher lifetime than the SHVOF ones.

  • 26.
    Ganvir, Ashish
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Curry, Nicholas
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Vilemova, Monika
    IPP Prague, Czech Republic.
    Pala, Zdenek
    IPP Prague, Czech Republic.
    Influence of Microstructure on Thermal Properties of Columnar Axial Suspension Plasma Sprayed Thermal Barrier Coatings2015In: Thermal Spray 2015: Proceedings from the International Thermal Spray Conference (May 11–14, 2015, Long Beach, California, USA) / [ed] A. McDonald, A. Agarwal, G. Bolelli, A. Concustell, Y.-C. Lau, F.-L. Toma, E. Turunen, C. Widener, 2015, 498-505 p.Conference paper (Refereed)
    Abstract [en]

    Suspension Plasma Spraying is a relatively new thermal spraying technique to produce advanced thermal barrier coatings. This technique enables the production of a variety of structures from highly dense, highly porous, segmented or columnar coatings. In this work a comparative study is performed on six different suspension plasma sprayed thermal barrier coatings which were produced using axial injection and different process parameters. The influence of coating morphology and porosity on thermal properties was of specific interest. Tests carried out include microstructural analysis with SEM, phase analysis using XRD, porosity calculation using Archimedes experimental setup, pore distribution analysis using mercury infiltration technique and thermal diffusivity/conductivity measurements using laser flash analysis. The results showed that columnar and cauliflower type coatings were produced by axial suspension plasma spraying process. Better performance coatings were produced with relatively higher overall energy input given during spraying. Coatings with higher energy input, lower thickness and wider range of submicron and nanometer sized pores distribution showed lower thermal diffusivity and hence lower thermal conductivity. Also, in-situ heat treatment did not show dramatic increase in thermal properties.

  • 27.
    Ganvir, Ashish
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Kumara, Chamara
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylen, Per
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments2017In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 26, no 1-2, 71-82 p.Article in journal (Refereed)
    Abstract [en]

    Axial suspension plasma spraying (ASPS) can generate microstructures with higher porosity and pores in the size range from submicron to nanometer. ASPS thermal barrier coatings (TBC) have already shown a great potential to produce low thermal conductivity coatings for gas turbine applications. It is important to understand the fundamental relationships between microstructural defects in ASPS coatings such as crystallite boundaries, porosity etc. and thermal conductivity. Object-oriented finite element (OOF) analysis has been shown as an effective tool for evaluating thermal conductivity of conventional TBCs as this method is capable of incorporating the inherent microstructure in the model. The objective of this work was to analyze the thermal conductivity of ASPS TBCs using experimental techniques and also to evaluate a procedure where OOF can be used to predict and analyze the thermal conductivity for these coatings. Verification of the model was done by comparing modeling results with the experimental thermal conductivity. The results showed that the varied scaled porosity has a significant influence on the thermal conductivity. Smaller crystallites and higher overall porosity content resulted in lower thermal conductivity. It was shown that OOF could be a powerful tool to predict and rank thermal conductivity of ASPS TBCs.

  • 28.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Curry, Nicholas
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Vaßen, Robert
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Design of Next Generation Thermal Barrier Coatings- Experiments and Modelling2013In: Surface and Coatings Technology, ISSN 0257-8972, Vol. 220, 20-26 p.Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coating (TBC) systems have been used in the gas turbine industry since the 1980's. The future needs of both the air and land based turbine industry involve higher operating temperatures with longer lifetime on the component so as to increase power and efficiency of gas turbines. The aim of this study was to meet these future needs by further development of zirconia coatings. The intention was to design a coating system which could be implemented in industry within the next three years. Different morphologies of ceramic topcoat were evaluated; using dual layer systems and polymers to generate porosity. Dysprosia stabilised zirconia was also included in this study as a topcoat material along with the state-of-the-art yttria stabilised zirconia (YSZ). High purity powders were selected in this work. Microstructure was assessed with scanning electron microscope and an in-house developed image analysis routine was used to characterise porosity content. Evaluations were carried out using the laser flash technique to measure thermal conductivity. Lifetime was assessed using thermo-cyclic fatigue testing. Finite element analysis was utilised to evaluate thermal-mechanical material behaviour and to design the morphology of the coating with the help of an artificial coating morphology generator through establishment of relationships between microstructure, thermal conductivity and stiffness. It was shown that the combined empirical and numerical approach is an effective tool for developing high performance coatings. The results show that large globular pores and connected cracks inherited within the coating microstructure result in a coating with best performance. A low thermal conductivity coating with twice the lifetime compared to the industrial standard today was fabricated in this work.

  • 29.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Dwivedi, Gopal
    Stony Brook University, USA.
    Nylén, Per
    University West, Department of Engineering Science, Research Environment Production Technology West.
    Vackel, Andrew
    Stony Brook University, USA.
    Sampath, Sanjay
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    An Experimental Study of Microstructure: Property Relationships in Thermal Barrier Coatings2013In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 22, no 5, 659-670 p.Article in journal (Refereed)
    Abstract [en]

    The thermal-mechanical properties of thermal barrier coatings are highly influenced by the defects present in coating microstructure. The aim of this study was to meet the future needs of the gas turbine industry by further development of zirconia coatings through the assessment of microstructure-property relationships. A design of experiments was conducted for this purpose with current, spray distance, and powder feed rate as the varied parameters. Microstructure was assessed with SEM and image analysis was used to characterize porosity content. Evaluations were carried out using laser flash technique to measure thermal properties. A bi-layer beam curvature technique in conjunction with controlled thermal cycling was used to assess the mechanical properties, in particular their nonlinear elastic response. Coating lifetime was evaluated by thermo-cyclic fatigue testing. Relationships between microstructure and coating properties are discussed. Dense vertically cracked microstructure and highly porous microstructure with large globular pores were also fabricated. Correlations between parameters obtained from nonlinear measurements and lifetime based on a priori established microstructural analysis were attempted in an effort to develop and identify a simplified strategy to assess coating durability following sustained long-term exposure to high temperature thermal cycling.

  • 30.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Eriksson, Robert
    Linköping University, Linköping, Sweden.
    Sand, Ulf
    EDR Medeso, Västerås, Sweden.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    A Diffusion-based Oxide Layer Growth Model using Real Interface Roughness in Thermal Barrier Coatings for Lifetime Assessment2015In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 271, no June, 181-191 p.Article in journal (Refereed)
    Abstract [en]

    The development of thermo-mechanical stresses during thermal cycling can lead to the formation of detrimental cracks in Atmospheric Plasma Sprayed (APS) Thermal Barrier Coatings systems (TBCs). These stresses are significantly increased by the formation of a Thermally Grown Oxide (TGO) layer that forms through the oxidation of mainly aluminium in the bondcoat layer of the TBC. As shown in previous work done by the authors, the topcoat-bondcoat interface roughness plays a major role in the development of the stress profile in the topcoat and significantly affects the lifetime of TBCs. This roughness profile varies as the TGO layer grows and changes the stress profile in the topcoat leading to crack propagation and thus failure.

    In this work, a two-dimensional TGO growth model is presented, based on oxygen and aluminium diffusion-reaction equations, using real interface profiles extracted from cross-section micrographs. The model was first validated by comparing the TGO profiles artificially created by the model to thermally cycled specimens with varying interface roughness. Thereafter, stress profiles in the TBC system, before and after the TGO layer growth, were estimated using a finite element modelling model described in previous work done by the authors. Three experimental specimens consisting of the same chemistry but with different topcoat-bondcoat interface roughness were studied by the models and the stress state was compared to the lifetimes measured experimentally. The combination of the two models described in this work was shown to be an effective approach to assess the stress behaviour and lifetime of TBCs in a comparative way.

  • 31.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Kumara, Chamara
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Bilayer Suspension Plasma-Sprayed Thermal Barrier Coatings with Enhanced Thermal Cyclic Lifetime: Experiments and Modeling2017In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 26, no 6, 1038-1051 p.Article in journal (Refereed)
    Abstract [en]

    Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.

  • 32.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    A modelling approach to design of microstructures in thermal barrier coatings2013In: Journal of Ceramic Science and Technology, ISSN 2190-9385, Vol. 4, no 2, 85-92 p.Article in journal (Refereed)
    Abstract [en]

    Thermo-mechanical properties of TBCs are strongly influenced by coating defects, such as delaminations and pores, thus making it essential to have a fundamental understanding of microstructure-property relationships in TBCs to produce a desired coating. Object-Oriented Finite element analysis (OOF) has been shown previously as an effective tool for evaluating thermal and mechanical material behaviour, as this method is capable of incorporating the inherent material microstructure as an input to the model. In this work, OOF was used to predict the thermal conductivity and effective Young's modulus of TBC topcoats. A Design of Experiments (DoE) was conducted by varying selected spray parameters for spraying Yttria Stabilized Zirconia (YSZ) topcoat. Microstructure was assessed with SEM and image analysis was used to characterize porosity content. The relationships between microstructural features and properties predicted by modelling are discussed. The microstructural features having the most beneficial effect on properties were sprayed with another spray gun so as to verify the results obtained from modelling. Characterisation of the coatings included microstructure evaluation, thermal conductivity and lifetime measurements. The modelling approach in combination with experiments undertaken in this study was shown to be an effective way in achieving coatings with optimised thermo-mechanical properties.

  • 33.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Design of Low Thermal Conductivity Thermal Barrier Coatings by Finite Element Modelling2011In: Surface Modification Technologies XXIV: SMT24, Dresden, September 7-9, 2010 / [ed] T. S. Sudarshan, Eckhard Beyer, and Lutz-Michael Berger, 2011, 353-365 p.Conference paper (Refereed)
    Abstract [en]

    Fundamental understanding of relationships between coating microstructure and thermal conductivity is important to be able to understand the influence of coating defects, such as delaminations and pores, on heat insulation in thermal barrier coatings (TBC). Object Oriented Finite element analysis (OOF) has recently been shown as an effective tool for evaluating thermo-mechanical material behaviour as this method is capable of incorporating the inherent material microstructure as an input to the model. The objective of this work was to evaluate a procedure where this technique is combined with Tbctool, a plasma-sprayed TBC like morphology generator, thus enabling development of low thermal conductivity coatings by simulation. Input parameters for Tbctool were computed from SEM images of sprayed microstructures using the image analysis software, Aphelion. Microstructures for as-sprayed as well as heat treated samples were evaluated. The thermal conductivities of the artificially generated microstructures were determined using OOF. Verification of the modelling procedure was performed by comparing predicted values by OOF with corresponding measured values using the laser flash technique. The results, although tentative in nature, indicate that the proposed simulation approach can be a powerful tool in the development of new low conductivity coatings.

  • 34.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Structure-property Relationships in Thermal Barrier Coatings by Finite Element Modelling2012In: Surface Modification Technologies XXV : proceedings of the Twenty Fifth International Conference on Surface Modification Technologies: SMT25, Trollhättan, June 20-22, 2011 / [ed] T. S. Sudarshan, and P. Nylén, 2012, 175-184 p.Conference paper (Refereed)
    Abstract [en]

    The thermal and mechanical properties of Thermal Barrier Coating systems (TBCs) are strongly influenced by coating defects, such as delaminations and pores, thus making it essential to have a fundamental understanding of microstructure-property relationships in TBCs, to produce a desired coating. Object-Oriented Finite element analysis (OOF) has been shown previously as an effective tool for evaluating thermal and mechanical material behaviour, as this method is capable of incorporating the inherent material microstructure as an input to the model. In this work, OOF was used to predict the thermal conductivity and effective Young’s modulus of TBC topcoats. A Design of Experiments (DoE) was conducted by varying selected spray parameters for spraying Yttria Partially Stabilized Zirconia (YPSZ) topcoat. Characterisation of the coatings included microstructure, porosity and crack content and thermal conductivity measurements. The relationships between microstructural features, thermal conductivity and Young’s modulus are discussed.

  • 35.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Skogsberg, Kristoffer
    University West, Department of Engineering Science.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Influence of topcoat-bondcoat interface roughness on stresses and lifetime in Thermal Barrier Coatings2013In: Proceedings of the International Thermal Spray Conference / [ed] Editor: Rogerio S. Lima, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Georg Mauer, André McDonald, and Filofteia-Laura, ASM International, 2013, 596-601 p.Conference paper (Refereed)
    Abstract [en]

    Failure in Atmospheric Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) is associated with the thermomechanical stresses developing due to the Thermally Grown Oxide (TGO) layer growth and thermal expansion mismatch during thermal cycling. The interface roughness has been shown to play a major role in the development of these induced stresses and lifetime of TBCs. Modeling has been shown as an effective tool to understand the effect of interface roughness on induced stresses. In previous work done by the research group, it was observed that APS bondcoats performed better than the bondcoats sprayed with High Velocity OxyFuel (HVOF) process which is contrary to the present literature data. The objective of this work was to understand this observed difference in life-time with the help of finite element modeling by using real surface topographies. Different TGO layer thicknesses were evaluated. The modeling results were also compared with existing theories established on simplified sinusoidal profiles published in earlier works. It was shown that modeling can be used as an effective tool to understand the stress behavior in TBCs with different roughness profiles.

  • 36.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Skogsberg, Kristoffer
    University West, Department of Engineering Science.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime inThermal Barrier Coatings2014In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 23, no 1-2, 170-181 p.Article in journal (Refereed)
    Abstract [en]

    Failure in Atmospheric Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) is associated with the thermo-mechanical stresses developing due to the Thermally Grown Oxide (TGO) layer growth and thermal expansion mismatch during thermal cycling. The interface roughness has been shown to play a major role in the development of these induced stresses and lifetime of TBCs. Modeling has been shown as an effective tool to understand the effect of interface roughness on induced stresses. In previous work done by our research group, it was observed that APS bondcoats performed better than the bondcoats sprayed with High Velocity Oxy-Fuel (HVOF) process which is contrary to the present literature data. The objective of this work was to understand this observed difference in lifetime with the help of finite element modeling by using real surface topographies. Different TGO layer thicknesses were evaluated. The modeling results were also compared with existing theories established on simplified sinusoidal profiles published in earlier works. It was shown that modeling can be used as an effective tool to understand the stress behavior in TBCs with different roughness profiles.

  • 37.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Fasth, Angelica
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylen, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Choi, W.B.
    Center for Thermal Spray Research, Stony Brook, NY, USA.
    Microindentation and Inverse Analysis to Characterize Elastic-Plastic Properties for Thermal Sprayed Ti2AlC and NiCoCrAlY2009In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 18, no 2, 194-200 p.Article in journal (Refereed)
    Abstract [en]

    Elastic-plastic material properties for HVOF sprayed Ti2AlC (sprayed with Maxthal 211 powder) and plasma sprayed NiCoCrAlY coatings were investigated using modeling and experimental Berkovich microindentation. Optical microstructure evaluations were also performed. The theories of Hertz, Oliver and Pharr were combined with finite element analysis for extracting the material properties. Empirically based material models for both thermal sprayed Ti2AlC and NiCoCrAlY coatings are proposed.

  • 38.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Fasth, Angelica
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Choi, W. B.
    Center for Thermal Spray Research, Stony Brook, NY, United States.
    Microindentation and inverse analysis to characterize elastic-plastic properties for thermal sprayed Ti2AlC and NiCoCrAlY2009In: Surface Modification Technologies XXII: Proceedings of the 22nd International Conference on Surface Modification Technologies SMT22 / [ed] T.S. Sudarshan & Per Nylen, VALAR Docs , 2009, Vol. 18, no 2, 177-186 p.Conference paper (Refereed)
  • 39.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Numerical modelling of the compression behaviour of single-crystalline MAX-phase materials2010In: Advanced materials research, ISSN 1022-6680, Vol. 89-91, 262-267 p.Article in journal (Refereed)
    Abstract [en]

    In this article a numerical model to describe the mechanical behaviour of nanophased singlecrystalline Ti3SiC2 is proposed. The approach is a two dimensional finite element periodic unit cell consisting of an elastic matrix interlayered with shear deformable slip planes which obey the Hill's yield criterion. The periodic unit cell is used to predict compression material behaviour of Ti3SiC2 crystals with arbitrary slip plane orientations. Stress strain relationships are derived for Ti 3SiC2, and the effect of slip plane volume fraction as well as orientation of the slip planes are investigated. The two main deformation mechanisms of the material namely; ordinary slip and so called kinking are considered in the study.

  • 40.
    Jiang, Janna
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Object-oriented finite element analysis to simulate microindentation of thermal sprayed MAX-phase coatings2009In: Proceedings - 2009 International Conference on Computer Modeling and Simulation, ICCMS 2009, 2009, 337-341 p.Conference paper (Other (popular science, discussion, etc.))
  • 41. Jonnalagadda, K.P.
    et al.
    Mahade, Satyapal
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nicholas, Curry
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Li, X-H.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylen, Per
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Björklund, Stefan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Peng, R.L.
    Hot corrosion behavior of multi-layer suspension plasma sprayed Gd2Zr2O7 /YSZ thermal barrier coatings2016In: Thermal Spray 2016: Proceedings from the International Thermal Spray Conference in Shanghai, P.R China, May 10-12, 2016, DVS – German Welding Society , 2016, Vol. 324, 261-266 p.Conference paper (Refereed)
  • 42.
    Kumara, Chamara
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylén, Per
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Effect of columnar cracks and dense layer in suspension plasma sprayed thermal barrier coatings on the coating stresses under thermal shock loadings: A modelling approach2016In: The 7th International Swedish Production Symposium, SPS16, Conference Proceedings: 25th – 27th of October 2016, Lund: Swedish Production Academy , 2016, 1-8 p.Conference paper (Refereed)
    Abstract [en]

    Suspension Plasma Spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coating applications in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the top coat-bond coat interface, where high stresses are generated due to thermal shock conditions that occur during engine operation. These stresses directly influence the coating lifetime. A topcoat layer with high toughness near the top coat-bond coat interface could thus be beneficial to withstand the stresses. In this work, a bilayer coating system was fabricated by SPS using yttria stabilised zirconia. The bilayer coating consisted of a dense topcoat layer near the top coat-bond coat interface which could provide the necessary toughness followed by a porous columnar structured layer which contains columnar cracks which could provide the necessary strain tolerance. The objective of this work is to study the effect of the columnar/vertical crack features on the generated stresses in the thermal barrier coating during thermal cyclic loading. A finite element modelling approach has been used for this purpose. The results show that the bilayer coating structure reduces the thermally induced stresses and could thus increase the lifetime.

  • 43.
    Li, C.
    et al.
    University of Manchester , School of Materials, Manchester M13 9PL, UK..
    Jacques, S. D.
    University of Manchester , School of Materials, Manchester M13 9PL, UK..
    Chen, Y.
    University of Manchester , School of Materials, Manchester M13 9PL, UK..
    Daisenberger, D.
    University of Manchester , School of Materials, Manchester M13 9PL, UK..
    Xiao, P.
    University of Manchester , School of Materials, Manchester M13 9PL, UK..
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylén, Per
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Cernik, R. J.
    University of Manchester , School of Materials, Manchester M13 9PL, UK..
    A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth2016In: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767, Vol. 49, no Pt 6, 1904-1911 p.Article in journal (Refereed)
    Abstract [en]

    The average residual stress distribution as a function of depth in an air plasma-sprayed yttria stabilized zirconia top coat used in thermal barrier coating (TBC) systems was measured using synchrotron radiation X-ray diffraction in reflection geometry on station I15 at Diamond Light Source, UK, employing a series of incidence angles. The stress values were calculated from data deconvoluted from diffraction patterns collected at increasing depths. The stress was found to be compressive through the thickness of the TBC and a fluctuation in the trend of the stress profile was indicated in some samples. Typically this fluctuation was observed to increase from the surface to the middle of the coating, decrease a little and then increase again towards the interface. The stress at the interface region was observed to be around 300 MPa, which agrees well with the reported values. The trend of the observed residual stress was found to be related to the crack distribution in the samples, in particular a large crack propagating from the middle of the coating. The method shows promise for the development of a nondestructive test for as-manufactured samples.

  • 44.
    Li, C.
    et al.
    University of Manchester, School of Materials, M13 9PL, UK.
    Jacques, S. D. M.
    University of Manchester, School of Materials, M13 9PL, UK.
    Chen, Y.
    University of Manchester, School of Materials, M13 9PL, UK.
    Xiao, Ping
    University of Manchester, School of Materials, M13 9PL, UK.
    Beale, A. M.
    University College London, RCaH Rutherford Appleton Laboratory, Harwell Oxford Didcot Oxon, OX11 0FA, UK.
    di Michiel, M.
    ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Cernik, R. J.
    University of Manchester, School of Materials, M13 9PL, UK.
    Precise strain profile measurement as a function of depth in thermal barrier coatings using high energy synchrotron X-rays2016In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 113, 122-126 p.Article in journal (Refereed)
    Abstract [en]

    We have developed a method of directly measuring the strain gradient as a function of depth in plasma sprayed Thermal Barrier Coatings (TBCs). A 92.8 keV monochromatic synchrotron X-ray beam was used to penetrate the 10 × 10 × 8 mm samples in transmission geometry. The samples had been heated to 1150 °C and held at that temperature for 190 h. The diffraction patterns were collected using a DECTRIS pilatus3 X CdTe 300 K area detector. The patterns were analyzed by partial circular integration followed by full Rietveld refinement to obtain the lattice parameters of the TBC top coat at 25 μm intervals as function of depth. The coatings surviving the heat treatment process without significant damage were found to exhibit a variable compressive stress state inside the top coat. This was found to be about − 600 MPa at the bond coat interface decreasing in a non-linear fashion towards the surface. By refinement of the data collected from sectors of whole Debye Scherrer rings we were able to estimate both the in-plane and out-of-plane strain.

  • 45.
    Li, Peigang
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Klement, Uta
    University West, Department of Engineering Science.
    Characterization of Cold Lap Defects in Tandem Arc MAG Welding2010In: Proceedings of the International Conference on Advances in Welding Science & Technology for Construction, Energy & Transportation AWST-2010: Istanbul, Turkey, 12-15 July, 2010, 2010, 303-311 p.Conference paper (Refereed)
  • 46.
    Li, Peigang
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Klement, Uta
    Department of Materials and manufacture, Chalmers University.
    Characterization of cold lap defects in tandem arc MAG welding2012In: Welding in the World, ISSN 0043-2288, E-ISSN 1878-6669, Vol. 56, no 9/10, 20-25 p.Article in journal (Refereed)
    Abstract [en]

    The objective of this investigation was to classify and characterize the small lack of fusion defects, called cold lap, located at the weld toe. Since the defects are very small (0.01–1.5 mm) and difficult to detect by NDT methods, a better understanding of the formation mechanism is required to be able to avoid their formation. The investigation consisted of two parts. Firstly, a study was made on the type and frequency of cold laps. Three types were identified, namely “spatter cold lap”, and “overlap cold lap” and “spatter-overlap cold lap”. No relation between type or frequency of cold laps and the welding parameters could be established. Secondly, the interface between spatter and the base material was investigated using optical and scanning electron microscopy, to better understand the cold lap formation mechanism. Manganese-silicate particles were found in the interface located in such a way that they may assist cold lap formation.

  • 47.
    Li, Peigang
    et al.
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Production Engineering.
    Klement, Uta
    Chalmers University of Technology, Materials and Manufacturing Technology.
    Characterization of cold lap defects in tandem arc MAG welding2013In: Rivista Italiana della Saldatura, ISSN 0035-6794, Vol. 65, no 5, 761-769 p.Article in journal (Refereed)
    Abstract [en]

    The objective of this investigation was to classify and characterize the small lack of fusion defects, called cold lap, located at the weld toe. Since the defects are very small (0.01-1.5 mm) and difficult to detect by NDT methods, a better understanding of the formation mechanism is required to be able to avoid their formation. The investigation consisted of two parts. Firstly, a study was made on the type and frequency of cold laps. Three types were identified, namely "spatter cold lap", and "overlap cold lap" and "spatter-overlap cold lap". No relation between type or frequency of cold laps and the welding parameters could be established. Secondly, the interface between spatter and the base material was investigated using optical and scanning electron microscopy, to better understand the cold lap formation mechanism. Manganese-silicate particles were found in the interface located in such a way that they may assist cold lap formation.

  • 48.
    Lyphout, Christophe
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Fasth, Angelica
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Mechanical Property of HVOF Inconel 718 Coating for Aeronautic Repair2014In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 23, no 3, 380-388 p.Article in journal (Refereed)
    Abstract [en]

    The module of elasticity is one of the most important mechanical properties defining the strength of a material which is a prerequisite to design a component from its early stage of conception to its field of application. When a material is to be thermally sprayed, mechanical properties of the deposited layers differ from the bulk material, mainly due to the anisotropy of the highly textured coating microstructure. The mechanical response of the deposited layers significantly influences the overall performance of the coated component. It is, therefore, of importance to evaluate the effective module of elasticity of the coating. Conventional experimental methods such as microindentation, nanoindentation and four-point bending tests have been investigated and their results vary significantly, mainly due to inhomogeneous characteristics of the coating microstructure. Synchrotron radiation coupled with a tensile test rig has been proposed as an alternative method to determine the coating anisotropic elastic behavior dependence on crystallographic orientations. The investigation was performed on Inconel 718 (IN718) HVOF coatings sprayed on IN718 substrates. Combining these experimental techniques yield a deeper understanding of the nature of the HVOF coating Young’s modulus and thus a tool for Design Practice for repair applications. © 2013 ASM International.

  • 49.
    Lyphout, Christophe
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Klement, Uta
    University West, Department of Engineering Science, Division of Production Engineering.
    Sattari, M.
    Characterization of adhesion strenght of HVOF sprayed IN718 coatings2009In: Proceedings of th 22nd Internationa Conference on Surface Modification technolgies - SMT22. Trollhättan, Sweden / [ed] T.S. Sudarshan & Per Nylen, VALAR Docs , 2009, 11-18 p.Conference paper (Refereed)
    Abstract [en]

    The tensile adhesion strength of thermally sprayed coating is conventionally evaluated via the ASTM C633-69 standard. The maximum measurable adhesion is then limited by the adhesion strength of the polymer media. High velocity oxy-fuel (HVOF) spraying can exhibit very high bonding strength and thus it is essential to develop an alternative method to evaluate coating adhesion strength. In this work a Modified Tensile Adhesion Test (MTAT) is proposed replacing gluing with induction brazing. The method was evaluated for HVOF sprayed Inconel 718 coatings deposited on Inconel 718 substrates. The effect of induction brazing process and the characteristics of the braze-coating interface was given particular interest. The results indicate that the method is superior to the ASTM C633-69 for characterisation of adhesion of coatings with high bond strength.

  • 50.
    Lyphout, Christophe
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Nylén, Per
    University West, Department of Engineering Science, Division of Production Engineering.
    Manescu, A.
    Università Politecnica delle Marche, Ancona, Italy.
    Pirling, T.
    Laue-Langevin Institute (ILL), Grenoble, France.
    Erratum  Residual stresses distribution through thick HVOF sprayed inconel 718 coatings: (Journal of Thermal Spray Technology DOI: 10.1007/s11666-008-9242- 9)2011In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 20, no 5, 1140- p.Article in journal (Refereed)
12 1 - 50 of 98
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf