Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lorentzon, John
    et al.
    University West, Department of Engineering Science.
    Järvstråt, Niklas
    University West, Department of Engineering Science, Division of Production Engineering.
    Modelling tool wear in cemented-carbide machining alloy 7182008In: International journal of machine tools & manufacture, ISSN 0890-6955, E-ISSN 1879-2170, Vol. 48, no 10, p. 1072-1080Article in journal (Refereed)
  • 2.
    Lorentzon, John
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Järvstråt, Niklas
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Tool Wear Geometry Updating in Inconel 718 Turning Simulations.2006In: 9th CIRP International Workshop on Modelling of Machining Operation: Bled, Slovenia, 2006, p. 491-498Conference paper (Other academic)
    Abstract [en]

    In machining of nickel based superalloys, such as Inconel 718, tool wear is a major problem due to the high stresses and the high temperatures at the tool chip interface. Enhanced knowledge of the tool wear mechanism and capability to predict tool wear are therefore of great importance in machining of nickel based superalloys. The objective with this paper is to investigate if the finite element method (FEM) can be used to predict the flank and crater wear of uncoated cemented carbide tool in turning ofInconel 718. An empirical model has been implemented in a commercial FE-code and the tool

    geometry is continuously updated to capture the evolution of wear. Experiments have been conducted

    to obtain parameters for the empirical wear model and for validation of the simulations. The worn

    geometry at the flank and rake face as well as the cutting edge radius was measured with white light

    interferometry. Wear model parameters were calibrated by fitting a simulation against measured worn

    geometries at the flank and rake face. Then separate simulations at other cutting speeds were

    compared with corresponding experiments to validate the model performance.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf