Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ganvir, Ashish
    et al.
    Research and Technology, GKN Aerospace Sweden AB, Trollhättan, 46186, Sweden.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Kumar, Nitish
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Effect of suspension characteristics on the performance of thermal barrier coatings deposited by suspension plasma spray2020In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 47, no 1, p. 272-283Article in journal (Refereed)
    Abstract [en]

    This paper investigates the influence of suspension characteristics on microstructure and performance of suspensions plasma sprayed (SPS) thermal barrier coatings (TBCs). Five suspensions were produced using various suspension characteristics, namely, type of solvent and solid load content, and the resultant suspensions were utilized to deposit five different TBCs under identical processing conditions. The produced TBCs were evaluated for their performance i.e. thermal conductivity, thermal cyclic fatigue (TCF) and thermal shock (TS) lifetime. This experimental study revealed that the differences in the microstructure of SPS TBCs produced using varied suspensions resulted in a wide-ranging overall TBC performance. All TBCs exhibited thermal conductivity lower than 1 W/(m. K) except water-ethanol mixed suspension produced TBC. The TS lifetime was also affected to a large extent where 10 wt % solid loaded ethanol and 25 wt % solid loaded water suspensions produced TBCs exhibited the highest and the lowest lifetime, respectively. On the contrary, TCF lifetime was not as significantly affected as thermal conductivity and TS lifetime, and all ethanol suspensions showed marginally better TCF lifetime than water and ethanol-water mixed suspensions deposited TBCs. © 2020

  • 2.
    Kaler, Nikhil
    et al.
    Signals and Software Group, Discipline of Electrical Engineering & Centre for Advance Electronics, Indian Institute of Technology Indore (IIT Indore) (IND).
    Bhatia, Vimal
    Signals and Software Group, Discipline of Electrical Engineering & Centre for Advance Electronics, Indian Institute of Technology Indore (IIT Indore) (IND); Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove (CZE); School of Electronic and Information Engineering, Soochow University, Suzhou (CHN).
    Kumar Mishra, Amit
    University West, Department of Engineering Science, Division of Mathematics, Computer and Surveying Engineering. Department of Electrical Engineering, University of Cape Town, Cape Town (ZAF).
    Deep learning-based robust analysis of laser bio-speckle data for detection of fungal-infected soybean seeds2023In: IEEE Access, E-ISSN 2169-3536, Vol. 11, p. 89331-89348Article in journal (Refereed)
    Abstract [en]

    T Seed-borne diseases play a crucial role in affecting the overall quality of seeds, efficient disease management, and crop productivity in agriculture. Detection of seed-borne diseases using machine learning (ML) and deep learning (DL) can automate the process at large-scale industrial applications for providinghealthy and high-quality seeds. ML-based methods are accurate for detecting and classifying fungal infectionin seeds; however, their performance degrades in the presence of noise. In this work, we propose a laser biospeckle based DL framework for detection and classification of disease in seeds under varying experimental parameters and noises. We develop a DL-based spatio-temporal analysis technique for bio-speckle data using DL networks, including neural networks (NN), convolutional neural networks (CNN) with long-short-termmemory (LSTM), three-dimensional convolutional neural networks (3D CNN), and convolutional LSTM (ConvLSTM). The robustness of the DL models to noise is a key aspect of this spatio-temporal analysis.

    In this study, we find that the ConvLSTM model has an accuracy of 97.72% on the test data and is robust to different types of noises with an accuracy of 97.72%, 94.31%, 98.86%, and 96.59% . Furthermore, the robust model (ConvLSTM) is evaluated for variations in experimental data parameters such as frame rate, frame size, and number of frames used. This model is also sensitive towards detecting bio-speckle activity of different order, and it shows average test accuracy of 99% for detecting four different classes. 

    Download full text (pdf)
    fulltext
  • 3.
    Kumar, Nitish
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Mack, Daniel E.
    Forschungszentrum Jülich GmbH, D-52425, Jülich (DEU).
    Mauer, Georg
    Forschungszentrum Jülich GmbH, D-52425, Jülich (DEU).
    Vassen, Robert
    Forschungszentrum Jülich GmbH, D-52425, Jülich (DEU).
    Columnar Thermal Barrier Coatings Produced by Different Thermal Spray Processes2021In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 30, p. 1437-1452Article in journal (Refereed)
    Abstract [en]

    Suspension plasma spraying (SPS) and plasma spray-physical vapor deposition (PS-PVD) are the only thermal spray technologies shown to be capable of producing TBCs with columnar microstructures similar to the electron beam-physical vapor deposition (EB-PVD) process but at higher deposition rates and relatively lower costs. The objective of this study was to achieve fundamental understanding of the effect of different columnar microstructures produced by these two thermal spray processes on their insulation and lifetime performance and propose an optimized columnar microstructure. Characterization of TBCs in terms of microstructure, thermal conductivity, thermal cyclic fatigue lifetime and burner rig lifetime was performed. The results were compared with TBCs produced by the standard thermal spray technique, atmospheric plasma spraying (APS). Bondcoats deposited by the emerging high-velocity air fuel (HVAF) spraying were compared to the standard vacuum plasma-sprayed (VPS) bondcoats to investigate the influence of the bondcoat deposition process as well as topcoat-bondcoat interface topography. The results showed that the dense PS-PVD-processed TBC had the highest lifetime, although at an expense of the highest thermal conductivity. The reason for this behavior was attributed to the dense intracolumnar structure, wide intercolumnar gaps and high column density, thus improving the strain tolerance and fracture toughness.

    Download full text (pdf)
    fulltext
  • 4.
    Kumar, Nitish
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Mahade, Satyapal
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Ganvir, Ashish
    University of Turku, Turku (FIN).
    Joshi, Shrikant
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Understanding the influence of microstructure on hot corrosion and erosion behavior of suspension plasma sprayed thermal barrier coatings2021In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 419, article id 127306Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBCs) are bilayer systems comprising a 7–8 wt% yttria partially stabilized zirconia (YSZ) top coat deposited over a metallic bond coat. Suspension plasma spraying (SPS) is an advanced and attractive top coat processing technique due to its capability to yield a variety of microstructures, including the desired columnar microstructure for enhanced strain tolerance and durability. This work attempts to investigate the desirable microstructural features in an SPS processed TBCs to mitigate hot corrosion and minimize erosion related losses that are often responsible for coating degradation. SPS processed TBCs were deposited utilizing three different spray conditions to obtain distinct microstructural features (column density, interpass [IP] porosity bands, column width), porosity content, and mechanical properties. Apart from comprehensive characterization utilizing SEM, XRD and micro-indentation tests, the as-deposited TBCs were subjected to hot-corrosion tests in the presence of vanadium pentoxide and sodium sulfate as corrosive salts. Post-corrosion analysis revealed complete infiltration of the molten salts in all the investigated TBCs. However, the delamination cracks generated due to the infiltrated corrosive species were minimal in case of TBCs with higher fracture toughness. The differences in microstructure and mechanical properties also led to differences in erosion performance, with TBCs possessing minimal total porosity content and high fracture toughness best resisting erosion related damage. Post-erosion analysis revealed that the TBCs with higher fracture toughness and micro-hardness showed superior erosion resistance. Based on the erosion and corrosion results and subsequent post-mortem of failed specimens, plausible damage mechanisms are proposed. Findings from this work provide new insights on developing damage tolerant TBCs microstructures with enhanced durability when exposed to erosion and hot corrosion environments.

    Download full text (pdf)
    fulltext
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf