Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ancona, Antonio
    et al.
    University West, Department of Engineering Science, Division of Production Systems. Physics Department, University of Bari ALDO MORO, Bari (ITA).
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Production Systems.
    Nilsen, Morgan
    University West, Department of Engineering Science, Division of Production Systems.
    Mi, Yongcui
    University West, Department of Engineering Science, Division of Production Systems.
    Kisielewicz, Agnieszka
    University West, Department of Engineering Science, Division of Production Systems.
    Monitoring and control of directed energy deposition using a laser beam2023In: Additive Manufacturing of High-Performance metallic Materials / [ed] Pederson, Robert, Andersson, Joel & Joshi, Shrikant V., Elsevier, 2023, 1., p. 612-638Chapter in book (Refereed)
    Abstract [en]

    To be a successful competitor among other technologies, metallic laser-directed energy depositionusing a laser beam would benefit from the support of intelligent automation making the processrobust, repeatable, and cost-efficient. This calls for technology leaps towards robust and accuratedetection and estimation of the conditions during processing and control schemes for robustperformance. This chapter discusses how developments in sensor technology and model-basedsignal processing can contribute to advancements in in-process monitoring of directed energydeposition using a laser beam and how developments in model-based feedforward- and feedbackcontrol can support automation. The focus is on how machine vision, optical emission spectroscopy,thermal sensing, and electrical process signals can support monitoring, control and better processunderstanding. These approaches are industrially relevant and have a high potential to support amore sustainable manufacturing. 

  • 2.
    Jadidi, Aydin
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Mi, Yongcui
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Nilsen, Morgan
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. Physics Department, University of Bari,Bari (ITA).
    Beam Offset Detection in Laser Stake Welding of Tee Joints Using Machine Learning and Spectrometer Measurements2022In: Sensors, E-ISSN 1424-8220, Vol. 22, no 10Article in journal (Refereed)
    Abstract [en]

    Laser beam welding offers high productivity and relatively low heat input and is one key enabler for efficient manufacturing of sandwich constructions. However, the process is sensitive to how the laser beam is positioned with regards to the joint, and even a small deviation of the laser beam from the correct joint position (beam offset) can cause severe defects in the produced part. With tee joints, the joint is not visible from top side, therefore traditional seam tracking methods are not applicable since they rely on visual information of the joint. Hence, there is a need for a monitoring system that can give early detection of beam offsets and stop the process to avoid defects and reduce scrap. In this paper, a monitoring system using a spectrometer is suggested and the aim is to find correlations between the spectral emissions from the process and beam offsets. The spectrometer produces high dimensional data and it is not obvious how this is related to the beam offsets. A machine learning approach is therefore suggested to find these correlations. A multi-layer perceptron neural network (MLPNN), support vector machine (SVM), learning vector quantization (LVQ), logistic regression (LR), decision tree (DT) and random forest (RF) were evaluated as classifiers. Feature selection by using random forest and non-dominated sorting genetic algorithm II (NSGAII) was applied before feeding the data to the classifiers and the obtained results of the classifiers are compared subsequently. After testing different offsets, an accuracy of 94% was achieved for real-time detection of the laser beam deviations greater than 0.9 mm from the joint center-line.

    Download full text (pdf)
    MDPI
  • 3.
    Kisielewicz, Agnieszka
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Mi, Yongcui
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. Physics Department, University of Bari, Bari (ITA).
    Multi sensor monitoring  of the wire-melt pool interaction inhot-wire directed energy deposition using laser beam2023In: IOP Conference Series: Materials Science and Engineering, IOP Publishing , 2023, Vol. 1296, p. 1-11, article id 012011Conference paper (Refereed)
    Abstract [en]

    This study investigates the combination of three sensors to improve in-process monitoring of the liquid bridge between the feedstock wire and melt pool in hot-wire Directed Energy Deposition using Laser Beam. The stability of the deposition process relies on the transfer of metal between the molten feedstock wire and melt pool. Therefore, monitoring the condition of the liquid bridge and the interaction between the feedstock wire and melt pool is crucial. By utilizing a laser-optics-integrated visible range optical spectrometer and electrical sensors measuring voltage and current, relevant process changes and indications of instabilities were detected. Combined information from the current sensor and the spectrometer provided a better understanding of the process and helped to identify deviations leading to unstable deposition modes.

    Download full text (pdf)
    fulltext
  • 4.
    Mi, Yongcui
    University West, Department of Engineering Science, Division of Production Systems. Bibliotek.
    Novel beam shaping and computer vision methods for laser beam welding2021Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Laser beam welding has been widely applied in different industrial sectors due to its unique advantages. However, there are still challenges, such as beam positioning in T-joint welding, and gap bridging in butt joint welding,especially in the case of varying gap width along a joint. It is expected that enabling more advanced control to a welding system, and obtaining more in-depth process knowledge could help to solve these issues. The aim of this work is to address such welding issues by a laser beam shaping technology using a novel deformable mirror together with computer vision methods and also to increase knowledge about the benefits and limitations with this approach.

    Beam shaping in this work was realized by a novel deformable mirror system integrated into an industrial processing optics. Together with a wave front sensor, a controlled adaptive beam shaping system was formed with a response time of 10 ms. The processes were monitored by a coaxial camera with selected filters and passive or active illumination. Conduction mode autogenous bead-on-plate welding and butt joint welding experiments have been used to understand the effect of beam shaping on the melt pool geometry. Circular Gaussian, and elliptical Gaussian shapes elongated transverse to and along the welding direction were studied. In-process melt pool images and cross section micrographs of the weld seams/beads were analyzed. The results showed that the melt pool geometry can be significantly modified by beam shaping using the deformable mirror. T-joint welding with different beam offset deviations relative to the center of the joint line was conducted to study the potential of using machine learning to track the process state. The results showed that machine learning can reach sufficient detection and estimation performance, which could also be used for on-line control. In addition, in-process and multidimensional data were accurately acquired using computer vision methods. These data reveal weaknesses of current thermo-fluid simulation model, which in turn can help to better understand and control laser beam welding. The obtained results in this work shows a huge potential in using the proposed methods to solve relevant challenges in laser beam welding.

    Download full text (pdf)
    fulltext
  • 5.
    Mi, Yongcui
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Guglielmi, Pasquale
    Department of Mechanics, Mathematics and Management, Politecnico di Bari, Bari (ITA).
    Nilsen, Morgan
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Palumbo, Gianfranco
    Department of Mechanics, Mathematics and Management, Politecnico di Bari, Bari (ITA).
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. Department of Mechanics, Mathematics and Management, Politecnico di Bari, Bari (ITA).
    Beam shaping with a deformable mirror for gap bridging in autogenous laser butt welding2023In: Optics and Lasers in Engineering, ISSN 0143-8166, Vol. 169, article id 107724Article in journal (Refereed)
    Abstract [en]

    In autogenous laser butt welding the variability of the joint gap can cause problems in terms of weld seam quality. A suitable strategy to alleviate this is to dynamically shape the laser beam instead of a circular-shaped beam with typical Gaussian or top hat distributions. Currently available systems cannot reach sufficient performance due to both the real time control system for the shape variation and the limited laser power currently manageable. In the present work, the possibility of bridging the joint gap during welding using a deformable mirror to elongate the focused laser beam from circular to transversal elliptical shape was investigated. The effect of the beam shaping on the geometry of the weld pool and of the weld cross sections was analysed, for different values of the gap in comparison with a circular Gaussian beam. It was demonstrated that the adoption of a transversal elliptical laser beam makes the welding process more stable, especially for large gaps (i.e. larger than the circular beam radius). Thanks to the beam shaping, the extension of the fused zone (in terms of the cross section area, height and width) resulted to be less sensitive to the gap's dimension; in addition, the extension of the heat affected zone and the presence of undercuts were evidently reduced.

  • 6.
    Mi, Yongcui
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Mahade, Satyapal
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. Physics Department, University of Bari, Bari (ITA).
    Conduction mode laser welding with beam shaping using a deformable mirror2022In: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 148Article in journal (Refereed)
    Abstract [en]

    This study explores the possibility of tailoring the fusion zone in conduction mode laser welding using a deformable mirror for beam shaping of multi-kilowatt continuous wave laser sources. Three power density distributions were shaped and used in bead on plate welding of Ti64 plates in conduction mode at three travel speeds. The effect on melt pool free surface geometry, cross section, microstructure and hardness profiles was measured and studied. It is shown that the geometry of the melt pool can be modified using a deformable mirror. A narrower and longer melt pool or a wider, shorter and shallower one were indeed obtained forming Gaussian-elliptical power density distributions oriented along and transverse to the travel direction, respectively. The latter distribution could be a favourable option for laser beam additive manufacturing as it could improve process efficiency while reducing remelting of the previous layer. This system has also a promising potential for adaptive process control since it could change fundamentally the beam shape at a rate faster than 10 ms. 

    Download full text (pdf)
    Optics and Laser Technology
  • 7.
    Mi, Yongcui
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Nilsen, Morgan
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. CNR-IFN Institute for Photonics and Nanotechnologies, Physics Department, via Amendola 173, Bari, 70126, Italy.
    Vision based beam offset detection in laser stake welding of T-joints using a neural network2019In: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 36, p. 42-49Article in journal (Refereed)
    Abstract [en]

    This paper presents an experimental study where a vision camera integrates coaxially into a laser beam welding tool to monitor beam deviations (beam offset) in laser stake welding of T-joints. The aim is to obtain an early detection of deviations from the joint centreline in this type of welding where the joint is not visible from the top side. A polynomial surface fitting method is applied to extract features that can describe the behaviour of the melt pool. A nonlinear autoregressive with exogenous inputs neural network model is trained to relate eight image features to the laser beam offset. The performance of the presented model is evaluated offline by different welding samples. The results show that the proposed method can be used to guide post weld inspection and has the potential for on-line adaptive control. © 2019 The Author(s). Published by Elsevier B.V.

  • 8.
    Noori Rahim Abadi, Seyyed Mohammad Ali
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Mi, Yongcui
    University West, Department of Engineering Science, Division of Production Systems.
    Kisielewicz, Agnieszka
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Influence of laser-wire interaction on heat and metal transfer in directed energy deposition2023In: International Journal of Heat and Mass Transfer, ISSN 0017-9310, E-ISSN 1879-2189, Vol. 205, article id 123894Article in journal (Refereed)
    Abstract [en]

    In this study, laser metal fusion with feedstock wire is addressed. We investigated how various process parameters affect the fraction of beam energy that is absorbed by the wire and the workpiece and the metal transfer from the feedstock wire to the melt pool. To perform this research, a thermo-fluid dynamic model with tracking of free surface deformation was developed to include the feeding of a solid wire and predict its melting. The fraction of beam energy absorbed by the metal was modeled as a function of local surface curvature and temperature, accounting for multiple Fresnel reflections and absorptions. The model was applied to Titanium alloy (Ti-6Al-4V) with a 1.07 μm laser and a process in conduction mode. Experiments at various wire feeding rates were conducted to evaluate the model’s ability to predict the process and a good agreement was obtained. The different parameters studied were the beam angular position, the wire angular position, the wire feed rate, and the beam-wire offset. The analysis of the simulation results gave a detailed physical understanding of the laser energy use. It highlighted that thermocapillary and Rayleigh-Plateau instabilities can contribute to the transition from continuous to drop metal transfer mode. Damping these instabilities might thus allow using a wider process window.

    Download full text (pdf)
    fulltext
  • 9.
    Noori Rahim Abadi, Seyyed Mohammad Ali
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Mi, Yongcui
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Effect of shaped laser beam profiles on melt flow dynamics in conduction mode welding2021In: International journal of thermal sciences, ISSN 1290-0729, E-ISSN 1778-4166, Vol. 166, p. 1-15, article id 106957Article in journal (Refereed)
    Abstract [en]

    A computational fluid dynamics approach is used to analyse the influence of beam shaping in fusion welding on melt thermal flow. Three beam shapes are studied at several welding travel speeds: a reference Gaussian profile and its elliptic elongations along and transverse to the welding travel direction. It is found that these beam shapes change not only the intensity and direction of the melt thermocapillary flow but also the flow pattern. For instance, and contrary to the other profiles, the beam shape elongated along the welding travel direction generates melt front vortices that assist metal pre-heating. It can result in deeper penetration, larger melt volume, and lower amount of thermal energy diffused into the heat affected zone. The simple elongation of a beam profile has thus a non-linear effect on the melt flow and in turn on the seam geometry as well as the temperature gradients in the heat affected zone.

    Download full text (pdf)
    fulltext
  • 10.
    Noori Rahim Abadi, Seyyed Mohammad Ali
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Mi, Yongcui
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Influence of Laser Beam Shaping on Melt Pool Thermocapillary Flow2020In: Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering (MCM'20) Prague, Czech Republic Virtual Conference – August, 2020 / [ed] Huihe Qiu, 2020, article id HTFF 125Conference paper (Refereed)
    Abstract [en]

    The effect of different shapes of laser beam power density distribution was investigated numerically with respect to the thermo-hydrodynamics of the melt pool during welding. The process addressed is conduction mode bead on plate welding of the Titanium alloy Ti-6Al-4V. A new solver based on the volume of fluid method to track the deformation of the melt free surface was developed in the OpenFOAM software. Experiments were conducted for the purpose of validating the model. In addition to the traditional cross-cut images of the weld bead, top view images of the melt pool were analysed to perform the validation along the 3-space dimensions. A good agreement between numerical predictions and experimental measurements was obtained, thus promising aconfident utilization of this simulation model when investigating the influence of beam shapes on the resulting weld seam. The effectof three different beam shapes on the melt pool velocity flow, temperature fields, and melt geometry were studied. It was found that the melt pool size was largest for an elliptical power density distribution with the major axis along the welding direction. The results also showed that the laser beam with Gaussian power density distribution resulted in the deepest penetration.

  • 11.
    Noori Rahim Abadi, Seyyed Mohammad Ali
    et al.
    University West, Department of Engineering Science, Division of Welding Technology.
    Mi, Yongcui
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Modelling of beam energy absorbed locally in conduction mode laser metal fusion2021In: Journal of physics. D, Applied physics, ISSN 0022-3727, Vol. 55, no 2, article id 025301Article in journal (Refereed)
    Abstract [en]

    Fluid dynamics models for laser material processing with metal fusion in conduction mode generally assume a constant absorptivity. This parameter is known to govern the process. However, it used to be pre-set by extrapolating absorptance measurements made at different conditions or adjusted to reproduce experimental bead shapes. In this study a new approach isd eveloped. It consists in predicting the absorptance as a function of local surface conditions, including the surface temperature. The proposed absorptance model is applied to the metal alloyTi-6Al-4V. It is found that the absorptance of this alloy changes with surface temperature over awide range of beam incidence angles. Thermo-fluid simulations with tracking of the free-surface deformation are performed for conduction mode beam welding test cases with a Yb fibre laser and different travel speeds. It is found that the absorptivity coefficient commonly used for this process clearly underestimates the absorptance and the melt pool geometry predicted for the process conditions of this study. The computational results are also compared against experimental results and good quantitative agreement of the melt pool depth, width, length, free surface contour geometry, and the curvature of the end depression left afterre-solidification at the laser switch-off location is obtained. The results show that the absorptance field predicted depends on the melt pool development stage, on the spatial location within the beam spot, and on the process conditions.

    Download full text (pdf)
    fulltext
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf