Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Tofeldt, Oskar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Pierce, S.G.
    University of Strathclyde, Electronic & Electrical Engineering, Glasgow, UK.
    Smillie, G.
    University of Strathclyde, Electronic & Electrical Engineering, Glasgow, UK.
    Kerr, W.
    Advanced Forming Research Centre, Inchinnan, Renfrewshire, UK.
    Flockhart, G.M.H.
    University of Strathclyde, Electronic & Electrical Engineering, Glasgow, UK.
    Macleod, C.N.
    University of Strathclyde, Electronic & Electrical Engineering, Glasgow, UK.
    Blue, R.
    University of Strathclyde, Electronic & Electrical Engineering, Glasgow, UK.
    Gachagan, A.
    University of Strathclyde, Electronic & Electrical Engineering, Glasgow, UK.
    Stratoudaki, T.
    University of Strathclyde, Electronic & Electrical Engineering, Glasgow, UK.
    Olsson, Jonas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    McMahon, D.
    Advanced Forming Research Centre, Inchinnan, Renfrewshire, UK.
    Investigation of fundamental ultrasonic propagation characteristics in NDT of Electron Beam Melted additive manufactured samples: Inconel 7182018Conference paper (Other academic)
    Abstract [en]

    New approaches for efficient NDT inspection of modern additively manufactured metallic components are required urgently to qualify and validate the next generation of metallic parts across a range of industries. Ultrasonic testing is a fundamental component of NDT for such additive manufacturing processes. This work studies the ultrasonic propagation characteristics of EBM manufactured sample coupons in Inconel 718material. Fundamental longitudinal and shear wave velocity measurements are experimentally measured in 3 orthogonal build directions of the sample coupons. Results show a dependency of the ultrasonic velocities and the build direction. The measured velocities are further verified in a phased array measurement showing successful results that highlights the potential of continued studies with synthetic apertures techniques.

  • 2.
    Tofeldt, Oskar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Ryden, Nils
    Lund University, Sweden .
    Guided wave evaluation techniques for testing of plate-like concrete structures2018Conference paper (Other academic)
    Abstract [en]

    There is a growing need for non-destructive techniques capable of investigating civilengineering structures of concrete material. The Impact-Echo (IE) method is one suchtechnique based on the study of a resonant and stationary mode. This mode corresponds to a Lamb mode. In turn, this accentuates that the IE method can easily be extended to include the analysis of propagating Lamb modes as well. Thereby a quantitative evaluation of the elastic plate properties and thickness is possible. Moreover, the use of Lamb waves lay the foundations for extended analysis which makes measurements based on an extension of the IE method an attractive complement to current ultrasonic techniques for plate-like concrete structures.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf