Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eynian, Mahdi
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Magnevall, Martin
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Sandvik Coromant AB, Sandviken, 81181, Sweden.
    Cedergren, Stefan
    GKN Aerospace Sweden AB, Trollhättan, 46138, Sweden.
    Wretland, Anders
    GKN Aerospace Sweden AB, Trollhättan, 46138, Sweden.
    Lundblad, Mikael
    Sandvik Coromant AB, Sandviken, 81181, Sweden.
    New methods for in-process identification of modal parameters in milling2018In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 77, p. 469-472Article in journal (Refereed)
    Abstract [en]

    Chatter vibrations encountered in machining can degrade surface finish and damage the machining hardware. Since chatter originates from unstable interaction of the machining process and the machining structure, information about vibration parameters of the machining structure should be used to predict combinations of cutting parameters that allow stable machining. While modal test methods, for example those with impact hammers, are widely used to identify structural parameters; the need for sophisticated test equipment is prohibitive in their use. Furthermore, dynamic properties of critical components of a machine tool may change as they get affected by cutting loads, material removal and spindle rotation. Recently few algorithms have been proposed that identify the in-process dynamic parameters by frequency measurements, thus avoiding these problems. In this paper, some of these algorithms are reviewed and their capabilities and limitations in processing am experimental data set are compared and discussed. © 2018 The Authors. Published by Elsevier Ltd.

  • 2.
    Parsian, Amir
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West. Sandvik Coromant, SE-811 81 Sandviken, Sweden.
    Magnevall, Martin
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Sandvik Coromant, Sandviken, Sweden.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Eynian, Mahdi
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Sound Analysis in Drilling, Frequency and Time Domains2017In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 58, p. 411-415Article in journal (Refereed)
    Abstract [en]

    This paper proposes a guideline for interpreting frequency content and time history of sound measurements in metal drilling processes. Different dynamic phenomena are reflected in generated sound in cutting processes. The footprint of such phenomena including torsional, lateral regenerative chatter and whirling in sound measurement results are discussed. Different indexable insert drills, at several cutting conditions, are covered. The proposed analysis could be used for studying, online monitoring and controlling of drilling processes. © 2017 The Authors.

  • 3.
    Östling, D
    et al.
    Sandvik Teeness AS, Ranheimsveien 127, Trondheim, Norway.
    Magnevall, Martin
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Sandvik Coromant AB, Sandviken, Sweden.
    Modelling and characterization of nonlinearities in a tuned mass damper-impulse hammer versus shaker excitation2016In: Proceedings of ISMA 2016 - International Conference on Noise and Vibration Engineering and USD2016 - International Conference on Uncertainty in Structural Dynamics / [ed] Sas P.,Moens D.,van de Walle A., KU Leuven, Departement Werktuigkunde , 2016, p. 3711-3719Conference paper (Refereed)
    Abstract [en]

    The rubber springs of a tuned mass damper (TMD) exhibit both nonlinear stiffness and damping, which complicates measurements of the frequency response function (FRF) of the device. In this paper we model and compare the frequency responses measured with both impulse hammer excitation and a shaker base excitation method. Since the impulse response will spend only a short time in the nonlinear regime, a reasonable assumption is that the nonlinearities will be less apparent and more difficult to determine. The results show that this is not the case and that both methods yield similar nonlinear parameters. By comparing responses at different excitation levels with appropriate nonlinear models, the nonlinearities can be determined. The results indicate that these approximations of the nonlinear effects are able to describe the dynamic behaviour of the TMD, and that the nonlinear properties of the material differ somewhat in the two measurement situations.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf