Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Elefante, Arianna
    et al.
    University of Bari, Physics Department, Via Amendola 173, 70126 Bari, Italy.
    Nilsen, Morgan
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Production Systems.
    Maggipinto, Tommaso
    University of Bari, Physics Department, Via Amendola 173, 70126 Bari, Italy.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. IFN-CNR Institute for Photonics and Nanotechnologies, Physics Department, Via Amendola 173, 70126 Bari, Italy.
    Detecting beam offsets in laser welding of closed-square-butt joints by wavelet analysis of an optical process signal2019In: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 109, p. 178-185Article in journal (Refereed)
    Abstract [en]

    Robotized laser beam welding of closed-square-butt joints is sensitive to the positioning of the laser beam with respect to the joint since even a small offset may result in a detrimental lack of sidewall fusion. An evaluation of a system using a photodiode aligned coaxial to the processing laser beam confirms the ability to detect variations of the process conditions, such as when there is an evolution of an offset between the laser beam and the joint. Welding with different robot trajectories and with the processing laser operating in both continuous and pulsed mode provided data for this evaluation. The detection method uses wavelet analysis of the photodetector signal that carries information of the process condition revealed by the plasma plume optical emissions during welding. This experimental data have been evaluated offline. The results show the potential of this detection method that is clearly beneficial for the development of a system for welding joint tracking.

  • 2.
    Gaudiuso, Caterina
    et al.
    Istituto di Fotonica e Nanotecnologie (IFN)-CNR U.O.S. Bari, Via Amendola 173, Bari, Italy.
    Giannuzzi, Giuseppe
    Istituto di Fotonica e Nanotecnologie (IFN)-CNR U.O.S. Bari, Via Amendola 173, Bari, Italy.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Lugarà, Pietro Mario
    Istituto di Fotonica e Nanotecnologie (IFN)-CNR U.O.S. Bari, Via Amendola 173, Bari, Italy.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems.
    Incubation effect in burst mode fs-laser ablation of stainless steel samples2018In: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, Vol. 10520, article id 105200AArticle in journal (Refereed)
    Abstract [en]

    We report on an experimental study of the incubation effect during irradiation of stainless steel targets with bursts of femtosecond laser pulses at 1030 nm wavelength and 100 kHz repetition rate. The bursts were generated by splitting the pristine 650-fs laser pulses using an array of birefringent crystals which provided time separations between sub-pulses in the range from 1.5 ps to 24 ps. We measured the threshold fluence in Burst Mode, finding that it strongly depends on the bursts features. The comparison with Normal Pulse Mode revealed that the existing models introduced to explain the incubation effect during irradiation with trains of undivided pulses has to be adapted to describe incubation during Burst Mode processing. In fact, those models assume that the threshold fluence has a unique value for each number of impinging pulses in NPM, while in case of BM we observed different values of threshold fluence for fixed amount of sub-pulses but different pulse splitting. Therefore, the incubation factor coefficient depends on the burst features. It was found that incubation effect is higher in BM than NPM and that it increases with the number of sub-pulses and for shorter time delays within the burst. Two-Temperature-Model simulations in case of single pulses and bursts of up to 4 sub-pulses were performed to understand the experimental results. © Copyright SPIE.

  • 3.
    Gaudiuso, Caterina
    et al.
    Istituto di Fotonica e Nanotecnologie (IFN)-CNR U.O.S. Bari, via Amendola 173, Bari, Italy & Università degli Studi di Bari, Dipartimento Interuniversitario di Fisica, via Amendola 173, Bari, Italy .
    Giannuzzi, Giuseppe
    Istituto di Fotonica e Nanotecnologie (IFN)-CNR U.O.S. Bari, via Amendola 173, Bari, Italy & Università degli Studi di Bari, Dipartimento Interuniversitario di Fisica, via Amendola 173, Bari, Italy.
    Volpe, Annalisa
    Istituto di Fotonica e Nanotecnologie (IFN)-CNR U.O.S. Bari, via Amendola 173, Bari, Italy.
    Lugarà, Pietro Mario
    Istituto di Fotonica e Nanotecnologie (IFN)-CNR U.O.S. Bari, via Amendola 173, Bari, Italy & Università degli Studi di Bari, Dipartimento Interuniversitario di Fisica, via Amendola 173, Bari, Italy.
    Choquet, Isabelle
    University West, Department of Engineering Science, Division of Welding Technology.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. Istituto di Fotonica e Nanotecnologie (IFN)-CNR U.O.S. Bari, via Amendola 173, Bari, Italy.
    Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 4, p. 3801-3813Article in journal (Refereed)
    Abstract [en]

    Abstract: We report on an experimental investigation of the incubation effect during irradiation of stainless steel with bursts of ultrashort laser pulses. A series of birefringent crystals was used to split the pristine 650-fs pulses into bursts of up to 32 sub-pulses with time separations of 1.5 ps and 3 ps, respectively. The number of selected bursts was varied between 50 and 1600. The threshold fluence was measured in case of Burst Mode (BM) processing depending on the burst features, i.e. the number of sub-pulses and their separation time, and on the number of bursts. We found as many values of threshold fluence as the combinations of the number of bursts and of sub-pulses constituting the bursts set to give the same total number of impinging sub-pulses. However, existing incubation models developed for Normal Pulse Mode (NPM) return, for a given number of impinging pulses, a constant value of threshold fluence. Therefore, a dependence of the incubation coefficient with the burst features was hypothesized and experimentally investigated. Numerical solutions of the Two Temperature Model (TTM) in case of irradiation with single bursts of up to 4 sub-pulses have been performed to interpret the experimental results. © 2018 Optical Society of America.

  • 4.
    Kisielewicz, Agnieszka
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems.
    Spectroscopic monitoring of laser blown powder directed energy deposition of Alloy 7182018In: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 25, p. 418-425Article in journal (Refereed)
    Abstract [en]

    Experimental explorations of a spectrometer system used for in-process monitoring of the laser blown powder directed energy deposition of Alloy 718 is presented. Additive manufacturing of metals using this laser process experiences repeated heating and cooling cycles which will influence the final microstructure and chemical composition at every given point in the built. The spectrometer system disclosed, under certain process conditions, spectral lines that indicate vaporisation of chromium. Post process scanning electron microscope energy dispersive spectroscopy analysis of the deposited beads confirmed a reduction of chromium. Since the chromium concentration in Alloy 718 is correlated to corrosion resistance, this result encourages to further investigations including corrosion tests.

  • 5.
    Mi, Yongcui
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Nilsen, Morgan
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. CNR-IFN Institute for Photonics and Nanotechnologies, Physics Department, via Amendola 173, Bari, 70126, Italy.
    Vision based beam offset detection in laser stake welding of T-joints using a neural network2019In: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 36, p. 42-49Article in journal (Refereed)
    Abstract [en]

    This paper presents an experimental study where a vision camera integrates coaxially into a laser beam welding tool to monitor beam deviations (beam offset) in laser stake welding of T-joints. The aim is to obtain an early detection of deviations from the joint centreline in this type of welding where the joint is not visible from the top side. A polynomial surface fitting method is applied to extract features that can describe the behaviour of the melt pool. A nonlinear autoregressive with exogenous inputs neural network model is trained to relate eight image features to the laser beam offset. The performance of the presented model is evaluated offline by different welding samples. The results show that the proposed method can be used to guide post weld inspection and has the potential for on-line adaptive control. © 2019 The Author(s). Published by Elsevier B.V.

  • 6.
    Nilsen, Morgan
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems.
    In-process Monitoring and Control of Robotized Laser Beam Welding of Closed Square Butt Joints2018In: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 25, p. 511-516Article in journal (Other academic)
    Abstract [en]

    In robotized laser welding of technical zero gap closed square butt joints it is critical to position the laser beam correct with regardsto the joint. Welding with an offset from the joint may cause lack of sidewall fusion, a serious defect that is hard to detect and gives a weak weld . When using machined parts with gap and misalignment between the parts that is close to zero, existing joint tracking systems will probably fail to track the joint. A camera based system using LED illumination and matching optical filters is proposed in this paper to address this issue. A high dynamic range CMOS camera and the LED illumination is integrated into the laser tool. The camera captures images of the area in front of the melt pool where the joint is visible and an algorithm based on the Hough transform and a Kalman filter estimates the offset between the laser spot and the joint position. Welding experiments, using a 6 kW fiber laser, have been conducted to evaluate the performance of the system. Promising results are obtained that can be used in the further development of a closed loop controlled joint tracking system.

  • 7.
    Nilsen, Morgan
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. IFN-CNR Institute for Photonics and Nanotechnologies, Physics Department, via Amendola 173, 70126 BARI, Italy.
    Monitoring of Varying Joint Gap Width During Laser Beam Welding by a Dual Vision and Spectroscopic Sensing System2017In: Physics Procedia, ISSN 1875-3892, E-ISSN 1875-3892, Vol. 89, p. 100-107Article in journal (Refereed)
    Abstract [en]

    A vision and spectroscopic system for estimation of the joint gap width in autogenous laser beam butt welding is presented. Variations in joint gap width can introduce imperfections in the butt joint seam, which in turn influence fatigue life and structural integrity. The aim of the monitoring approach explored here is to acquire sufficiently robust process data to be used to guide post inspection activities and/or to enable feedback control for a decreased process variability. The dual-sensing approach includes a calibrated CMOS camera and a miniature spectrometer integrated with a laser beam tool. The camera system includes LED illumination and matching optical filters and captures images of the area in front of the melt pool in order to estimate the joint gap width from the information in the image. The intensity of different spectral lines acquired by the spectrometer has been investigated and the correlation between the intensity of representative lines and the joint gap width has been studied. Welding experiments have been conducted using a 6 kW fiber laser. Results from both systems are promising, the camera system is able to give good estimations of the joint gap width, and good correlations between the signal from the spectrometer and the joint gap width have been found. However, developments of the camera setup and vision algorithm can further improve the joint gap estimations and more experimental work is needed in order to evaluate the robustness of the systems.

  • 8.
    Nilsen, Morgan
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. Physics Department, IFN-CNR Institute for Photonics and Nanotechnologies, Bari, Italy.
    Robust vision-based joint tracking for laser welding of curved closed-square-butt joints2019In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 101, no 5-8, p. 1867-1978Article in journal (Refereed)
    Abstract [en]

    Robotized laser beam welding of closed-square-butt joints is sensitive to how the focused laser beam is positioned in relation to the joint, and existing joint tracking systems tend to fail in detecting the joint when the gap and misalignment between the work pieces are close to zero. A camera-based system is presented based on a high dynamic range camera operating with LED illumination at a specific wavelength and a matching optical filter. An image processing algorithm based on the Hough transform extracts the joint position from the camera images, and the joint position is then estimated using a Kalman filter. The filter handles situations, when the joint is not detectable in the image, e.g., when tack welds cover the joint. Surface scratches, which can be misinterpreted as being the joint, are handled by a joint curve prediction model based on known information about the nominal path defined by the robot program. The performance of the proposed system has been evaluated off line with image data obtained during several welding experiments.

  • 9.
    Nilsen, Morgan
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production Systems.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Production Systems.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. IFN-CNR Institute for Photonics and Nanotechnologies, Physics Department, via Amendola 173, 70126 BARI, Italy.
    Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding2017In: Optics and Laser Technology, ISSN 0030-3992, E-ISSN 1879-2545, Vol. 96, p. 107-116Article in journal (Refereed)
    Abstract [en]

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced incase of narrow gap butt welding, where most of the commercial automatic joint tracing system fail to detect the exact position and size of the gap. In this work, adual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative the joint position. The spectral emissions from the laser induced plasma plume has been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments where artificial abrupt as well as gradual excursions of the laser beam out of the joint were produced. Results indicate thata combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  • 10.
    Tricarico, L.
    et al.
    DMMM, Politecnico di Bari, Viale Japigia 182, Bari, 70126, Italy; CNR-IFN UOS Bari, Via Amendola 173, Bari, 70126, Italy.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. CNR-IFN UOS Bari, Via Amendola 173, Bari, 70126, Italy.
    Palumbo, G.
    DMMM, Politecnico di Bari, Viale Japigia 182, Bari, 70126, Italy; CNR-IFN UOS Bari, Via Amendola 173, Bari, 70126, Italy.
    Sorgente, D.
    NR-IFN UOS Bari, Via Amendola 173, Bari, 70126, Italy; Università degli Studi della Basilicata, School of Engineering, Via Ateneo Lucano, 10, Potenza, 85100, Italy .
    Corizzo, O.
    DMMM, Politecnico di Bari, Viale Japigia 182, Bari, 70126, Italy.
    Spina, R.
    DMMM, Politecnico di Bari, Viale Japigia 182, Bari, 70126, Italy; CNR-IFN UOS Bari, Via Amendola 173, Bari, 70126, Italy.
    Lugara, P. M.
    CNR-IFN UOS Bari, Via Amendola 173, Bari, 70126, Italy; Università degli Studi e Politecnico di Bari, Dipartimento di Fisica, Via Amendola 173, Bari, 70126, Italy .
    Numerical and experimental investigation of the discrete spot laser hardening of a graphite-coated hypereutectoid steel using a fibre laser2019In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 104, no 1-4, p. 1393-1402Article in journal (Refereed)
    Abstract [en]

    The single-pulse laser hardening of a hypereutectoid steel coated by a graphite layer was investigated using a numerical/experimental approach. Experimental tests were conducted on coated samples using a fibre laser source and without any gas shielding aiming to explore the effect of laser power, pulse energy and defocusing distance on the dimensions of the hardened region. The process operating window of the discrete spot laser hardening using the graphite layer was determined through a finite element model and compared with previous results obtained on uncoated samples. For the same laser power and interaction times, an enlargement of the hardened region was found when using the graphite coating, especially when operating at the lowest laser energy level. The process operating window remains similar in shape to the one of the uncoated steel but moves towards larger hardened diameters and much larger defocusing distances. Once the maximum temperature has been fixed, a linear relationship between the hardened diameter and the defocusing distance exists. No obvious surface oxidation occurs since the graphite coating acts as a protective layer. © 2019, Springer-Verlag London Ltd., part of Springer Nature.

  • 11.
    Tricarico, L.
    et al.
    DMMM – Politecnico di Bari, viale Japigia 182, Bari, Italy.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. CNR-IFN UOS Bari, via Amendola 173, 70126 Bari, Italy.
    Palumbo, G.
    DMMM – Politecnico di Bari, viale Japigia 182, Bari, Italy.
    Sorgente, D.
    CNR-IFN UOS Bari, via Amendola 173, Bari, Italy.
    Spina, R.
    DMMM – Politecnico di Bari, viale Japigia 182, Bari, Italy.
    Lugarà, P.M.
    CNR-IFN UOS Bari, via Amendola 173, Bari, Italy.
    Discrete spot laser hardening and remelting with a high-brilliance source for surface structuring of a hypereutectoid steel2017In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 115, p. 194-202Article in journal (Refereed)
    Abstract [en]

    In this work the single-pulse laser irradiation of a hypereutectoid steel was investigated using a fiber laser source, in a range of process parameters enabling surface hardening and remelting. Effects of laser power, pulse energy and defocusing distance were investigated using a numerical/experimental approach. Laser surface treatments were conducted on uncoated samples without any gas shielding, changing both the laser power and the pulse energy, and exploring a wide range of defocusing distances. Numerical simulations were conducted using a finite element model calibrated by means of an optimization procedure based on a specific calculation algorithm and using a subset of experimental data producing surface melting. Using both simulations and experiments, the process operating windows of the discrete spot laser treatment were determined: it was found that, when varying the laser power between 250 W and 750 W, melt-free hardened zones are produced with a maximum extension between 0.7 mm and 1.0 mm; on the contrary, in case of more tightly beam focusing conditions, surface melting occurred with a size of the re-melted areas ranging between 1.0 mm and 1.4 mm. Results further showed that a small change (generally 2–3 mm) of the defocusing distance suddenly brings the material from melting to a non-hardening condition. © 2016 Elsevier Ltd

  • 12.
    Volpe, A.
    et al.
    CNR-IFN, Institute for Photonics and Nanotechnologies, S.S. Bari, via Amendola 173, Bari, Italy.
    Ancona, Antonio
    University West, Department of Engineering Science, Division of Production Systems. CNR-IFN, Institute for Photonics and Nanotechnologies, S.S. Bari, via Amendola 173, Bari, Italy.
    Trotta, G.
    CNR-ITIA, Institute of Industrial Technology and Automation, Bari, Italy.
    Vázquez, R. M.
    CNR-IFN, Institute for Photonics and Nanotechnologies, Milan, Italy.
    Fassi, I.
    CNR-ITIA, Institute of Industrial Technology and Automation, Milan, Italy.
    Osellame, R.
    CNR-IFN, Institute for Photonics and Nanotechnologies, Milan, Italy.
    Fabrication and assembling of a microfluidic optical stretcher polymeric chip combining femtosecond laser and micro injection molding technologies2017In: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, article id 100920FArticle in journal (Refereed)
    Abstract [en]

    Microfluidic optical stretchers are valuable optofluidic devices for studying single cell mechanical properties. These usually consist of a single microfluidic channel where cells, with dimensions ranging from 5 to 20 Όm are trapped and manipulated through optical forces induced by two counter-propagating laser beams. Recently, monolithic optical stretchers have been directly fabricated in fused silica by femtosecond laser micromachining (FLM). Such a technology allows writing in a single step in the substrate volume both the microfluidic channel and the optical waveguides with a high degree of precision and flexibility. However, this method is very slow and cannot be applied to cheaper materials like polymers. Therefore, novel technological platforms are needed to boost the production of such devices on a mass scale. In this work, we propose integration of FLM with micro-injection moulding (ΌIM) as a novel route towards the cost-effective and flexible manufacturing of polymeric Lab-on-a-Chip (LOC) devices. In particular, we have fabricated and assembled a polymethylmethacrylate (PMMA) microfluidic optical stretcher by exploiting firstly FLM to manufacture a metallic mould prototype with reconfigurable inserts. Afterwards, such mould was employed for the production, through ΌIM, of the two PMMA thin plates composing the device. The microchannel with reservoirs and lodgings for the optical fibers delivering the laser radiation for cell trapping were reproduced on one plate, while the other included access holes to the channel. The device was assembled by direct fs-laser welding, ensuring sealing of the channel and avoiding thermal deformation and/or contamination. © 2017 SPIE.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf