Ändra sökning
Avgränsa sökresultatet
1 - 25 av 25
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Awasthi, Shikha
    et al.
    Material Science and Engineering, Indian Institute of Technology, Kanpur, Kanpur, India .
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Pandey, Chandra Prabha
    Babu Banarasi Das University, Department of Chemistry, Lucknow, India.
    Balani, Kantesh
    Material Science and Engineering, Indian Institute of Technology, Kanpur, Kanpur, India .
    Multi-Length Scale Tribology of Electrophoretically Deposited Nickel-Diamond Coatings2017Ingår i: JOM: The Member Journal of TMS, ISSN 1047-4838, E-ISSN 1543-1851, Vol. 69, nr 2, s. 227-235Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrophoretically deposited (EPD) nickel and its composite coatings are widely used to enhance the life span of continuous ingot casting molds in the steel, aerospace and automotive industries. This article reports the effect of different concentrations of diamond particles (2.5–10 g/L) on the wear mechanism of EPD Ni. The distribution of diamond particles in the Ni matrix was observed using Voronoi tessellation. Variation in COF was observed by a fretting wear test to be 0.51 ± 0.07 for Ni, which decreases to 0.35 ± 0.03 for the Ni-diamond coatings. The wear volume of the coatings with 7.5 g/L concentration of diamond was observed to be a minimum (0.051 ± 0.02 × 10−3 mm3) compared with other composite coatings. Further, the micro-scratch testing of the coatings also exhibited a reduced COF (0.03–0.12) for 7.5 g/L diamond concentration compared with Ni (0.08–0.13). Higher wear resistance of the diamond-added coatings (optimum 7.5 g/L concentration) is due to the balance between the dispersion strengthening mechanism and the enhancement of the load-bearing capacity due to the incorporation of diamond particles. Thus, these composites can be used for applications in automotive and aerospace industries. © 2016 The Minerals, Metals & Materials Society

  • 2.
    Björklund, Stefan
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Function-dependent coating architectures by hybrid powder-suspension plasma spraying: Injector design, processing and concept validation2018Ingår i: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 142, s. 56-65Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The attractive properties achieved by Suspension Plasma Spraying (SPS), combined with the availability of high throughput capable plasma spray systems that permit axial feeding, provide encouragement to explore use of suspensions for next generation functional applications. This paper deals with realization of coatings with various pre-determined function-dependent architectures by employing a hybrid powder-suspension feedstock. Some illustrative application-relevant coating architecture designs are discussed, along with the specific benefits that can accrue by deploying a multi-scale powder-suspension feedstock combination. An elegant feedstock delivery arrangement to enable either simultaneous or sequential feeding of powders and suspensions to enable convenient processing of coatings with desired architectures is presented. As proof-of-concept, deposition of layered, composite and functionally graded coatings using the above system is also demonstrated using appropriate case studies

  • 3.
    Ganvir, Ashish
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Govindarajan, Sivakumar
    International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005 Hyderabad (IND).
    Jahagirdar, Adwait Rajeev
    Högskolan Väst, Institutionen för ingenjörsvetenskap.
    Björklund, Stefan
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Klement, Uta
    Chalmers University of Technology, Gothenburg, (SWE).
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Tribological performance assessment of Al2O3-YSZ composite coatings deposited by hybrid powder-suspension plasma spraying2021Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 409, s. 1-13, artikel-id 126907Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The advent of high-throughput plasma spray systems that allow axial feeding encourages the study of using liquid feedstock for various next-generation functional applications. The current study explores the benefit of such a plasma spray system to deposit hybrid powder-suspension Al2O3-YSZ ceramic matrix composite (CMC) coatings for tribological applications. The tribological performance of the hybrid processed CMC coatings was assessed using scratch, ball-on-plate wear and erosion tests and compared with that of monolithic powder-derived Al2O3 coatings. As-deposited and tribo-tested coatings were characterized using Scanning Electron Microscopy, X-ray Diffraction and Energy Dispersive Spectroscopy to analyse their microstructure and phase constitution. The results showed that the tribological performance of the hybrid powder-suspension Al2O3-YSZ CMC coating was significantly improved by enhancing the wear resistance under scratch, dry sliding ball-on-plate and erosion tests as compared to the conventional APS deposited monolithic Al2O3 coating. About 36% decrease in the dry sliding ball-on-plate specific wear rate and up to 50% decrease in the erosion wear rate was noted in the hybrid powder-suspension Al2O3-YSZ CMC coating as compared to the conventional APS deposited monolithic Al2O3 coating. The study concludes that the hybrid powder-suspension route can create CMC coatings with unique multi-length scale microstructures which can be attractive for combining different tribological attributes in the same coating system.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Post-treatment of Alloy 718 produced by electron beam melting2019Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Electron beam melting (EBM), a metal additive manufacturing (AM) process, has received considerable industrial attention for near net shape manufacture of complex geometries with traditionally difficult-to-machine materials. This has fuelled considerable academic interest in investigating EBM of Alloy 718, a nickel ironbased superalloy possessing an exciting combination of good mechanical behaviour and cost effectiveness. EBM production of Alloy 718 is particularly promising for aerospace and other sectors which value rapid production of components with large scope for design flexibility. The EBM builds are characterized by presence of inevitable defects and, anisotropy within a build is also a concern. Consequently, as-built Alloy 718 has to be subjected to post-build thermal-treatments (post-treatments) to ensure that the parts eventually meet the critical service requirements. Not withstanding the above, limited knowledge is available about optimal post-treatments for EBM-built Alloy 718. Therefore, the main focus of the work presented in this thesis was to systematically investigate the response of EBM-built material to post-treatments, which include hotisostatic pressing (HIPing), solution treatment (ST), and aging.

    HIPing of EBM-built Alloy 718 led to more than an order of magnitude reduction in defect content, which was reduced from as high as 17% to < 0.2% in samples built with intentionally introduced porosity to investigate limits of defect closure achievable through HIPing. In addition, HIPing also caused complete dissolution of δ and γ" phases present in the as-built condition, with the latter causing dropin hardness of the material. HIPing had no effect on the carbides and inclusions such as TiN, Al2O3 present in the built material. The evolution of microstructure during ST and aging was systematically investigated. Growth of potentially beneficial grain boundary δ phase precipitates was found to cease after a certain duration of ST, with samples subjected to prior-HIPing exhibiting lesser precipitation of the δ phase during ST. While the specimen hardness increased onaging, it was observed to plateau after a duration significantly shorted than the specified ASTM 'standard' aging cycle. Therefore, prima facie there are promising prospects for shortening the overall heat treatment duration. A combination of HIPing, ST, and aging treatments in a single uninterrupted cycle was also explored. Future work involving incorporation of a shortened heat treatment schedule in a combined cycle can have significant industrial implications.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Thermal post-treatment of Alloy 718 produced by electron beam melting2020Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Additive manufacturing (AM) has emerged as a disruptive technology and it is a vital part in the present era of fourth industrial revolution, Industry 4.0.Electron beam melting (EBM), a metal AM process, has received considerable industrial attention for near net shape manufacture of complex geometries with traditionally difficult-to-machine materials. EBM production of Alloy 718, a nickel-iron based superalloy possessing good mechanical and corrosion properties at elevated temperatures, is particularly promising for aerospace and energy sectors. However, EBM Alloy 718 builds are typically characterized by presence of inevitable defects and anisotropy, warranting post-processing thermal-treatments (post-treatments) to ensure that the components eventually meet the critical servicerequirements. The existing post-treatment standards include hot isostatic pressing (HIPing) over the temperature range of 1120°C-1185°C, followed by solution treatment (ST) and a two-step (‘8+8’ hours) aging under conditions conventionally adopted for cast and wrought Alloy 718, and no effort has yet been invested in optimizing post-treatment schedules specifically for EBM Alloy 718. Consequently, the objective of this work was to systematically investigate the response of EBM-built material to eachof the post-treatment steps to develop an improved understanding of howthe microstructure evolves with time during each step, since such knowledge can lay the foundation for optimizing the post-treatment protocol.Through study of microstructure and mechanical property assessment it was found that the temperature during HIPing can be reduced to 1120°C compared to the common practice employing higher temperatures. In addition, HIPing also caused complete dissolution of δ and γ"/γ' phases, promoted homogenization and resulted in drop in hardness but had no evident effect on the carbides and inclusions such as TiN and Al2O3 present in the as-built material. Subjecting EBM Alloy 718 to ST and two-step agingled to precipitation of δ phase and γ"/γ' phases, respectively.

    The evolution of microstructure during ST and two-step aging was also systematically investigated. Progressive precipitation and growth of grain boundary δ phase precipitates was observed during the entire 1 hour duration of ST, with samples not subjected to prior-HIPing exhibiting higher amount of the δ phase precipitation during ST. During the two-stepaging, detailed investigation of microstructure evolution and hardness changes showed that, particularly the conventional ‘8+8’ hour long two-stepaging treatment can be shortened to a ‘4+1’ hours treatment. Such shortened treatment was observed to be robust when applied to various kinds of EBM builds. Another approach for shortening post-treatment by integrating HIPing and HT inside the HIP vessel was also successfully implemented. These approaches with shortened post-treatment were also found to not compromise the mechanical response of EBM Alloy 718. Further shortening of the typical long thermal post-treatment cycle, through reduction in HIPing time from 4 hours to 1 hour and possible elimination of ST, also appears promising.

    Ladda ner fulltext (pdf)
    Spikblad
    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Ahlfors, Magnus
    Quintus Technologies AB, Västerås, Sweden.
    Bahbou, Fouzi
    ARCAM AB, Mölndal, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Effect of Different Post-treatments on the Microstructure of EBM-Built Alloy 7182019Ingår i: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 28, nr 2, s. 673-680Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron beam melting (EBM) of Alloy 718 is of rapidly growing interest as it allows cost-effective production of complex components. However, the inherent flaws in the component in as-built state are of concern in view of the severe working conditions in which Alloy 718 components typically operate. The present work entails an investigation of changes in microstructure that accompany some post-treatments that are being widely considered to address defects in EBM processed Alloy 718. The effect of two different post-treatments, namely hot isostatic pressing (HIP) and a combined HIP + heat treatment (HT) carried out inside the HIP vessel, have been studied and results from as-built and post-treated specimens were compared in terms of porosity/lack-of-fusion, microstructure, phase constitution (NbC content, ÎŽ-phase) and micro-hardness. Post-treatment resulted in reduction in defect content by more than an order of magnitude. HIPing led to complete dissolution of ÎŽ phase. In comparison to as-built material, HIPed specimens exhibited significant drop in hardness. However, a sharp ‘recovery’ of hardness to yield values higher than in as-built condition was observed after HIP + HT and can be attributed to precipitation of γ′′ phase. © 2018, The Author(s).

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Björklund, Stefan
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Curry, Nicholas
    Treibacher Industrie AG, Althofen, 9330, Austria (AUT).
    Govindarajan, Sivakumar
    International Advanced Research Center for Powder Metallurgy and New Materials, Hyderabad, 500 005, India (IND).
    Wiklund, Urban
    Uppsala University, Applied Materials Science, Uppsala, 75121, Sweden.
    Gaudiuso, Caterina
    University of Bari, Physics Department, via Amendola 173, Bari, 70126, Italy (ITA).
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Axial plasma spraying of mixed suspensions: A case study on processing, characteristics, and tribological behavior of Al2O3-YSZ coatings2020Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 10, nr 15, artikel-id 5140Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Thermal spraying deploying liquid feedstock offers an exciting opportunity to obtain coatings with characteristics vastly different from those produced using conventional spray-grade powders. The most extensively investigated variant of this technique is Suspension Plasma Spraying (SPS), which utilizes a suspension of fine powders in an appropriate medium. The relatively recent advent of axial feed capable plasma spray systems can enable higher throughputs during SPS, provides the possibility for spraying with longer stand-off distances, and also permit the use of suspensions with higher solid loading. The present work investigates axial plasma sprayed coatings produced using a mixed suspension of fine (submicron or nano-sized) powders of Al2O3 and YSZ as a case study. Deposition of the mixed suspension using axial injection plasma spraying, comprehensive evaluation of characteristics of the resulting coatings, and assessment of their tribological behavior were of particular interest. Evaluation of surface morphology, microstructure, and hardness of the coatings reveals that axial SPS of mixed suspensions provides an exciting pathway to realize finely structured multi-constituent coatings using suspensions with as high as 40 wt. % solid loading. The study of scratch, dry sliding wear, and erosion behavior also specifically shows that the addition of YSZ in the Al2O3 matrix can improve the tribological properties of the coating. © 2020 by the authors.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Björklund, Stefan
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Curry, Nicholas
    Treibacher Ind AG, Althofen, Austria.
    Wiklund, U.
    Uppsala Univ, Dept Technol, Mat Sci Div, S-75121 Uppsala, Swede.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Axial suspension plasma spraying of Al2O3 coatings for superior tribological properties2017Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 315, s. 80-87Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Suspension plasma spray is a relatively new thermal spray technique which enables feeding of fine powder to produce advanced coatings for varied applications. This work investigates the difference in structure and performance of Al2O3 coatings manufactured using conventional micron-sized powder feedstock and a suspension of sub-micron to few micron sized powder. Axial injection was implemented for deposition in both cases. The effect of feedstock size and processing on the tribological performance of the two coatings was of specific interest. The coatings were characterized by Optical and Scanning Electron Microscopy, micro-hardness and scratch resistance testing, and their dry sliding wear performance evaluated. The suspension sprayed coatings yielded significantly higher scratch resistance, lower friction coefficient and reduced wear rate compared to conventional coatings. The improved tribological behaviour of the former is attributable to finer porosity, smaller splat sizes, and improved interlamellar bonding. (C) 2017 Elsevier B.V. All rights reserved.

  • 9.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Björklund, Stefan
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Joshi, Shrikant
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Deposition of Novel Composite Coatings by Suspension-Powder Hybrid Plasma Spraying2016Ingår i: The 7th International Swedish Production Symposium, SPS16, Conference Proceedings: 25th – 27th of October 2016, Lund: Swedish Production Academy , 2016, s. 1-8Konferensbidrag (Refereegranskat)
    Abstract [en]

    Suspension Plasma Spray (SPS) is an emerging technique which overcomes the difficulties typically associated with feeding of fine (submicron or nano-sized) powders in conventional atmospheric plasma spraying (APS) to obtain superior coating properties for various engineering applications. The advent of plasma spray systems that allow axial injection of feedstock, which considerably improves thermal exchange between the plasma plume and the injected feedstock, has enabled substantial enhancement in deposition rates/efficiencies to make SPS techno-commercially exciting. The present study utilizes both the above advances in plasma spraying to demonstrate the ability to deposit novel coating architectures by sequential/simultaneous axial injection of both powder and a suspension feedstock. The results reveal that composite coatings uniquely combining the micron-size features arising from the spray-grade powder and the submicron or nano-sized features attributable to the suspension, can be conveniently realized using the above approach. Three different kinds of coating architectures were generated, namely layered, composite, and functionally graded. The sprayed coatings were extensively characterized for attributes such as surface morphology, microstructure, and composition particularly in the case of composite coatings.

  • 10.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Björklund, Stefan
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Wiklund, U.
    Uppsala University, Materials Science Division, Uppsala, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Hybrid powder-suspension Al2O3-ZrO2 coatings by axial plasma spraying: Processing, characteristics & tribological behaviour2017Ingår i: Proceedings of the International Thermal Spray Conference & Exposition, New York: Curran Associates, Inc , 2017, Vol. 1, s. 374-379Konferensbidrag (Refereegranskat)
    Abstract [en]

    The ability of suspension plasma spraying (SPS) to overcome difficulties associated with feeding of fine (submicron or nano-sized) powders and achieve more refined microstructures than possible in atmospheric plasma spraying (APS) is well established. In recent times, the use of axial injection plasma spray systems has yielded substantial enhancement in deposition rates/efficiencies due to improved thermal exchange between the plasma plume and injected feedstock. The present paper describes utilization of both the above advances in plasma spraying to create various function-dependent coating architectures through simultaneous and/or sequential spraying of hybrid powder-suspension feedstock. A specific variant of such hybrid axial plasma spraying that enables deposition of composite coatings by simultaneous injection of a powder and a suspension is discussed in particular detail. Results obtained using an Al2O3-ZrO2 material system as a case study reveal that composite coatings combining the micron-size features arising from the spray-grade Al2O3 powder and submicron or nano-sized features attributable to the ZrO2 suspension can be conveniently realized. The surface morphology, microstructure, and composition of these coatings, as well as their tribological behaviour determined using scratch and ball-on-disc tests, are presented herein. The utility of this method to develop a wide array of composite coatings is also discussed. 

  • 11.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Bourreau, Kévin
    University of Limoges, Specialty Materials, Limoges 87000, France (FRA).
    Olsson, Jonas
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Klement, Uta
    Chalmers University of Technology, Department of Industrial and Materials Science, Gothenburg 41296, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Can Appropriate Thermal Post-Treatment Make Defect Content in as-Built Electron Beam Additively Manufactured Alloy 718 Irrelevant?2020Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 13, nr 3, artikel-id 536Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron beam melting (EBM) is gaining rapid popularity for production of complex customized parts. For strategic applications involving materials like superalloys (e.g., Alloy 718), post-treatments including hot isostatic pressing (HIPing) to eliminate defects, and solutionizing and aging to achieve the desired phase constitution are often practiced. The present study specifically explores the ability of the combination of the above post-treatments to render the as-built defect content in EBM Alloy 718 irrelevant. Results show that HIPing can reduce defect content from as high as 17% in as-built samples (intentionally generated employing increased processing speeds in this illustrative proof-of-concept study) to &lt;0.3%, with the small amount of remnant defects being mainly associated with oxide inclusions. The subsequent solution and aging treatments are also found to yield virtually identical phase distribution and hardness values in samples with vastly varying as-built defect contents. This can have considerable implications in contributing to minimizing elaborate process optimization efforts as well as slightly enhancing production speeds to promote industrialization of EBM for applications that demand the above post-treatments.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Mehtani, Hitesh
    Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, India (IND).
    Yao, Shu-Wei
    Xi’an Jiaotong University, School of Materials Science and Engineering, Xi’an, 710049, China (CHN).
    Samajdar, Indradev
    Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India (IND).
    Klement, Uta
    Chalmers University of Technology, Gothenburg, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    As-Built and Post-treated Microstructures of an Electron Beam Melting (EBM) Produced Nickel-Based Superalloy2020Ingår i: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 51, nr 12, s. 6546-6559Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The microstructures of an electron beam melted (EBM) nickel-based superalloy (Alloy 718) were comprehensively investigated in as-built and post-treated conditions, with particular focus individually on the contour (outer periphery) and hatch (core) regions of the build. The hatch region exhibited columnar grains with strong texture in the build direction, while the contour region had a mix of columnar and equiaxed grains, with no preferred crystallographic texture. Both regions exhibited nearly identical hardness and carbide content. However, the contour region showed a higher number density of fine carbides compared to the hatch. The as-built material was subjected to two distinct post-treatments: (1) hot isostatic pressing (HIP) and (2) HIP plus heat treatment (HIP + HT), with the latter carried out as a single cycle inside the HIP vessel. Both post-treatments resulted in nearly an order of magnitude decrease in defect content in hatch and contour regions. HIP + HT led to grain coarsening in the contour, but did not alter the microstructure in the hatch region. Different factors that may be responsible for grain growth, such as grain size, grain orientation, grain boundary curvature and secondary phase particles, are discussed. The differences in carbide sizes in the hatch and contour regions appeared to decrease after post-treatment. After HIP + HT, similar higher hardness was observed in both the hatch and contour regions compared to the as-built material.

  • 13.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Neikter, Magnus
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Capek, J.
    Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, , Villigen PSI, CH-5232, Switzerland (CHE).
    Polatidis, Efthymios
    Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, , Villigen PSI, CH-5232, Switzerland (CHE).
    Colliander, Magnus Hörnqvist
    Chalmers University of Technology, Gothenburg, 41296, Sweden .
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Pederson, Robert
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Residual stress determination by neutron diffraction in powder bed fusion-built Alloy 718: Influence of process parameters and post-treatment2020Ingår i: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 195, artikel-id 109045Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Alloy 718 is a nickel-based superalloy that is widely used as a structural material for high-temperature applications. One concern that arises when Alloy 718 is manufactured using powder bed fusion (PBF) is that residual stresses appear due to the high thermal gradients. These residual stresses can be detrimental as they can degrade mechanical properties and distort components. In this work, residual stresses in PBF built Alloy 718, using both electron and laser energy sources, were measured by neutron diffraction. The effects of process parameters and thermal post-treatments were studied. The results show that thermal post-treatments effectively reduce the residual stresses present in the material. Moreover, the material built with laser based PBF showed a higher residual stress compared to the material built with electron-beam based PBF. The scanning strategy with the lower amount of residual stresses in case of laser based PBF was the chessboard strategy compared to the bi-directional raster strategy. In addition, the influence of measured and calculated lattice spacing (d0) on the evaluated residual stresses was investigated. © 2020 The Authors

  • 14.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Olsson, Jonas
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Ahlfors, Magnus
    Quintus Technologies AB, Västerås, Sweden.
    Klement, Uta
    Chalmers University of Technology, Department of Industrial and Materials Science, Gothenburg, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    The Effect of Location and Post-treatment on the Microstructure of EBM-Built Alloy 7182018Ingår i: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications / [ed] Ott, E., Liu, X., Andersson, J., Bi, Z., Bockenstedt, K., Dempster, I., Groh, J., Heck, K., Jablonski, P., Kaplan, M., Nagahama, D. and Sudbrack, C., Springer, 2018, s. 115-129Konferensbidrag (Refereegranskat)
    Abstract [en]

    Additive manufacturing (AM) of Ni-based superalloys such as Alloy 718 may obviate the need for difficult machining and welding operations associated with geometrically intricate parts, thus potentially expanding design possibilities and facilitating cost-effective manufacture of complex components. However, processing AM builds completely free from defects, which may impair mechanical properties such as fatigue and ductility, is challenging. Anisotropic properties, microstructural heterogeneities and local formation of undesired phases are additional concerns that have motivated post-treatment of AM builds. This work investigates the microstructural changes associated with post-treatment of Alloy 718 specimens produced by Electron Beam Melting (EBM) for as-built microstructures at 3 build heights: near base plate, in the middle of build and near the top of the build. Two different post-treatment conditions, hot isostatic pressing (HIP) alone and a combined HIP with solutionising and two-step aging were examined and compared to the results for the as-built condition. The influence of various post-treatments on minor phase distributions (δ, γ″, carbides), overall porosity, longitudinal grain widths and Vickers microhardness was considered. The HIP treatment led to significant reduction in overall porosity and dissolution of δ phase, which led to appreciable grain growth for both post-treatment conditions. The variation in hardness noted as a function of build height for the as-built specimens was eliminated after post-treatment. Overall, the hardness was found to decrease after HIP and increase after the full HIP, solutionising and aging treatment, which was attributed to dissolution of γ″ during HIP and its re-precipitation in subsequent heat treatment steps.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT). VTT Technical Research Centre of Finland, Espoo (FIN).
    Shipley, James
    Quintus Technologies AB, Västerås (SWE).
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Thermal post-treatment of additively manufactured components2023Ingår i: Additive Manufacturing of High-Performance metallic Materials / [ed] Pederson, Robert, Andersson, Joel & Joshi, Shrikant V., Elsevier, 2023, 1., s. 358-427Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    Metal additive manufacturing (AM) processes have been receiving growing industrial attention in recent times for near net shape manufacture of complex parts with traditionally difficult-to-machine materials, such as high-performance super alloys and Titanium alloys. AM processing of these materials is especially promising for aerospace and other industrial sectors that value design flexibility, rapid production, and reduction in wastage of expensive feedstock. However, depending upon the specific AM technique employed, AM-built parts may be characterized by one or more of the following: defects, presence of undesirable phases, absence of desired hardening precipitates, anisotropy in properties, etc. Consequently, thermal post-treatment can be a crucial step in any robust production process aimed at ensuring that the AM-built components eventually meet critical service requirements. Depending upon the alloy in question, thermal post-treatments can comprise hot isostatic pressing and heat treatment. This chapter outlines the main drivers for thermal post-treatment in case of AM processed super alloys and Ti alloys, as well as the typical stages involved based on the alloy or application in question. The influence of each stage of post-treatment, as well as the associated time-temperature schedules, on microstructure, phase constitution, and mechanical properties is also discussed, using illustrative examples from AM-built Alloy 718 and Ti-6Al-4V.

  • 16.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Sittiho, Anumat
    University of Idaho, Department of Chemical and Materials Engineering, Moscow, ID 83844, United States.
    Charit, Indrajit
    University of Idaho, Department of Chemical and Materials Engineering, Moscow, ID 83844, United States.
    Klement, Uta
    Chalmers University of Technology, Department of Industrial and Materials Science, Gothenburg, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Effect of post-treatments under hot isostatic pressure on microstructural characteristics of EBM-built Alloy 7182019Ingår i: Additive Manufacturing, ISSN 2214-8604, E-ISSN 2214-7810, Vol. 28, s. 727-737Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron beam melting (EBM) has emerged as an important additive manufacturing technique. In this study, Alloy 718 produced by EBM was investigated in as-built and post-treated conditions for microstructural characteristics and hardness. The post-treatments investigated were hot isostatic pressing (HIP) and combined HIP + heat treatment (HIP + HT) carried out as a single cycle inside the HIP vessel. Both the post-treatments resulted in significant decrease in defects inevitably present in the as-built material. The columnar grain structure of the as-built material was found to be maintained after post-treatment, with some sporadic localized grain coarsening noted. Although HIP led to complete dissolution of δ and γ′′ phase, stable NbC and TiN (occasionally present) particles were observed in the post-treated specimens. Significant precipitation of γ′′ phase was observed after HIP + HT, which was attributed to the two-step aging heat treatment carried out during HIP + HT. The presence of γ′′ phase or otherwise was correlated to the hardness of the material. While the HIP treatment resulted in drop in hardness, HIP + HT led to 'recovery' of the hardness to values exceeding those exhibited by the as-built material. © 2019 Elsevier B.V.

  • 17.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Zaninelli, Enrico
    Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Modena (ITA).
    Gundgire, Tejas
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Ahlfors, Magnus
    Quintus Technologies AB, Västerås (SWE).
    Ojo, Olanrewaju
    Department of Mechanical Engineering, University of Manitoba, Winnipeg (CAN).
    Klement, Uta
    Chalmers University of Technology, Gothenburg, (SWE).
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Microstructure evolution and mechanical response-based shortening of thermal post-treatment for electron beam melting (EBM) produced Alloy 7182021Ingår i: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 820, artikel-id 141515Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron beam melting (EBM) produced Alloy 718 was subjected to thermal post-treatment involving hot isostatic pressing (HIPing) and heat treatment (HT). Subjecting the material to HIPing at 1120 degrees C led to significant densification. Study of microstructure evolution during HT (comprising of solution treatment and aging) showed possibility of significantly shortening the HT duration, particularly the time for two-step aging from the standard (8 h + 8 h) long cycle to possibly a shortened (4 h + 1 h) cycle. Another approach for shortening the post-treatment cycle by integrating the HIPing with HT inside the HIP vessel was also successfully implemented. The above observations were further substantiated by tensile response of the material subjected to the varied post-treatment cycles; out of all the post-treatments steps, tensile behaviour was observed to be mainly affected by the aging treatment. Further prospects for shortening the post-treatment protocol are also described, such as shortening of HIPing duration for the typical 4 h to 1 h cycle as well as possible elimination of solution treatment step from the entire post-treatment protocol specifically when prior HIPing is performed. Heat treatment with prior HIPing was found to be crucial for improving fatigue life, because subjecting EBM Alloy 718 to only HT, irrespective of the short or standard long protocol, rendered inferior fatigue response.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Goel, Sneha
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Zaninelli, Enrico
    Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, 41100, Modena, Italy (ITA).
    Gårdstam, Johannes
    Quintus Technologies AB, 72166, Västerås, Sweden.
    Klement, Uta
    Chalmers University of Technology, Gothenburg, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Microstructure evolution-based design of thermal post-treatments for EBM-built Alloy 7182020Ingår i: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 56, nr 2, s. 5250-5268Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Alloy 718 samples were fabricated by electron beam melting (EBM) additive manufacturing process. The work focused on systematic investigation of response of the material to various thermal post-treatments, involving hot isostatic pressing (HIPing), solution treatment (ST) and two-step aging, to tailor post-treatment procedure for EBM-built Alloy 718. Results showed that HIPing at lowered temperature can be used for attaining desired defect closure while preserving grain size. Subjecting the material to ST, with or without prior HIPing, mainly caused precipitation of δ phase at the grain boundaries with prior HIPing decreasing the extent of δ phase precipitation. Moreover, results suggest that the utility of ST, with prior HIPing, could be dictated by the need to achieve a certain δ phase content, as the typically targeted homogenization after ST had already been achieved through HIPing. Detailed investigation of microstructural evolution during subsequent aging with and without prior HIPing showed that a significantly shortened aging treatment (‘4 + 1’ h), compared to the ‘standard’ long treatment (‘8 + 8’ h) traditionally developed for conventionally produced Alloy 718, might be realizable. These results can have significant techno-economic implications in designing tailored post-treatments for EBM-built Alloy 718.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Gopal, Vasanth
    et al.
    Department of Physics, School of Advanced Sciences, VIT, Vellore 632014, India Centre for Biomaterials, Cellular and Molecular Theranostics, VIT, Vellore 632014, India.
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Manivasagam, Geetha
    Centre for Biomaterials, Cellular and Molecular Theranostics, VIT, Vellore 632014, India.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Performance of Hybrid Powder-Suspension Axial Plasma Sprayed Al2O3-YSZ Coatings in Bovine Serum Solution2019Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 12, nr 12, artikel-id E1922Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ceramic coatings on metallic implants are a promising alternative to conventional implants due to their ability to offer superior wear resistance. The present work investigates the sliding wear behavior under bovine serum solution and indentation crack growth resistance of four coatings, namely (1) conventional powder-derived alumina coating (Ap), (2) suspension-derived alumina coating (As), (3) composite Al2O3-20wt % Yittria stabilized Zirconia (YSZ) coating (AsYs) deposited using a mixed suspension, and (4) powder Al2O3-suspension YSZ hybrid composite coating ApYs developed by axial feeding plasma spraying, respectively. The indentation crack growth resistance of the hybrid coating was superior due to the inclusion of distributed fine YSZ particles along with coarser alumina splats. Enhanced wear resistance was observed for the powder derived Ap and the hybrid ApYs coatings, whereas the suspension sprayed As and AsYs coatings significantly deteriorated due to extensive pitting.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Gundgire, Tejas
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Klement, Uta
    Chalmers University of Technology, Department of Industrial and Material Science, Gothenburg, 41296, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Response of different electron beam melting produced Alloy 718 microstructures to thermal post-treatments2020Ingår i: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 167, artikel-id 110498Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron beam melting (EBM) was used to produce Alloy 718 specimens with different microstructures (columnar, equiaxed and a combination thereof) by varying the process parameters. The present study aimed at assessing the response of such varying as-built microstructures to identical thermal post-treatments, which included hot isostatic pressing (HIPing) followed by heat treatment involving solution treatment and aging. The effect of these treatments on defect content, grain structure, hardness and phase constitution in the specimens was specifically analysed. Despite differences in defect content of as-built specimens with distinct microstructures, HIPing was effective in closing defects leading to samples exhibiting similar density. After HIPing, grains with equiaxed morphology or columnar grains with lower aspect ratio showed higher tendency for grain growth in comparison to the columnar grains with higher aspect ratio. The various factors affecting the stability of grains during HIPing of builds with distinct microstructures were investigated. These factors include texture, grain size, and secondary phase particles. The carbide sizes in the different as-built samples varied but were found to be largely unaffected by the post-treatments. Solution treatment following HIPing led to greater precipitation of grain boundary ÎŽ phase in regions with coarser grains than the smaller ones. After HIPing and heat treatment, all specimens exhibited similar precipitation of γ″ phase regardless of their grain morphology in the as-built condition. © 2020 The Author(s)

  • 21.
    Joshi, Shrikant V.
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Björklund, S.
    Wiklund, U.
    Hybrid powder-suspension Al2O3-ZrO2 coatings by axial plasma spraying: Processing, characteristics & tribological behavior2017Konferensbidrag (Övrigt vetenskapligt)
  • 22.
    Kanhed, Satish
    et al.
    Laboratory for Biomaterials, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
    Awasthi, Shikha
    Laboratory for Biomaterials, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Pandey, Aditi
    Laboratory for Biomaterials, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
    Sharma, Rajeev
    Laboratory for Biomaterials, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
    Upadhyaya, Anish
    Powder Metallurgy Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
    Balani, Kantesh
    Laboratory for Biomaterials, Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
    Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites2017Ingår i: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 43, nr 13, s. 10442-10449Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The present work aims to the study of developing porosity in hydroxyapatite (HAp) scaffold by using graphite porogen (with 0-30 vol%) followed by engineering the changes achieved by conventional- (CS) and microwave sintering (MS) techniques. The generated porosity was controlled between similar to 6-27% as the porogen concentration increases in HAp scaffold. Voronoi tessellation was utilized in order to evaluate the distribution of pores. The enhanced mechanical properties including fracture toughness (0.83 MPa m(1/2)), fracture strength (7.5 MPa), and hardness (183.7 VHN) were observed for microwave sintered HAp scaffold with 8% porosity. The fitting between porosity and fracture strength elicited that microwave sintered HAp with 8% porosity provides maximum crack-propagation resistance while restricting grain size (similar to 0.23 mu m) and eliciting high extent of sintering (similar to 1.34) because of their rapid heating rates. The cell viability (MTT assay) and cell culture confirm the cytocompatibility of porous HAp for application as bone implant that need accelerated replacement of bone tissues.

  • 23.
    Kanhed, Satish
    et al.
    Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Awasthi, Shikha
    Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Midha, Swati
    Department of Textile Technology Indian Institute of Technology Delhi New Delhi, 110016, India.
    Nair, Jitin
    Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Nisar, Ambreen
    Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Patel, Anup Kumar
    Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Pandey, Aditi
    Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Sharma, Rajeev
    Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT). Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Upadhyaya, Anish
    Powder Metallurgy Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Ghosh, Sourabh
    Department of Textile Technology Indian Institute of Technology Delhi New Delhi, 110016, India.
    Balani, Kantesh
    Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh, India.
    Microporous Hydroxyapatite Ceramic Composites as Tissue Engineering Scaffolds: An Experimental and Computational Study2018Ingår i: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648, Vol. 20, nr 7, artikel-id 1701062Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bone‐tissue engineering mandates the development of multi‐functional bioactive porous hydroxyapatite (HAp) scaffolds. Herein, microwave sintered HAp/ZnO and HAp/Ag composite scaffolds with ≈5–19% porosity are developed using 0–30 vol% graphite as a porogen. The mechanical properties of the porous scaffold are analyzed in detail, revealing that even being more porous, the reinforcement of ZnO (9% porosity, hardness of 2.8 GPa, and toughness of 3.5 MPa.m1/2) has shown to have better hardness and fracture toughness when compared to Ag (5% porosity, hardness of 1.6 GPa, and toughness of 2.6 MPa.m1/2). The flexural strength obtained experimentally are complemented with a finite‐element technique that adopts microstructural features in visualizing the effect of porosity on stress distribution. The antibacterial efficacy and cytocompatibility of these composites are validated by increased metabolic activity and conspicuous cell‐matrix interactions. The anticipation of the results reveal that HAp/ZnO (9% porosity) and HAp/Ag (5% porosity) composites can be used as a potential multi‐functional bone implant scaffolds.

  • 24.
    Kumara, Chamara
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Balachandramurthi, Arun Ramanathan
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Hanning, Fabian
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Moverare, Johan
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT). Linköping University, Division of Engineering Materials, Department of Management and Engineering, Linköping, SE-58183, Sweden.
    Toward a better understanding of phase transformations in additive manufacturing of Alloy 7182020Ingår i: Materialia, E-ISSN 2589-1529, Vol. 13, artikel-id 100862Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents a discussion on the phase-transformation aspects of additively manufactured Alloy 718 during the additive manufacturing (AM) process and subsequent commonly used post-heat treatments. To this end, fundamental theoretical principles, thermodynamic and kinetics modeling, and existing literature data are employed. Two different AM processes, namely, laser-directed energy deposition and electron-beam powder-bed fusion are considered. The general aspects of phase formation during solidification and solid state in Alloy 718 are first examined, followed by a detailed discussion on phase transformations during the two processes and subsequent standard post heat-treatments. The effect of cooling rates, thermal gradients, and thermal cycling on the phase transformation in Alloy 718 during the AM processes are considered. Special attention is given to illustrate how the segregated composition during the solidification could affect the phase transformations in the Alloy 718. The information provided in this study will contribute to a better understanding of the overall process–structure–property relationship in the AM of Alloy 718 718. © 2020

  • 25.
    Zafer, Yunus Emre
    et al.
    Högskolan Väst, Institutionen för ingenjörsvetenskap.
    Goel, Sneha
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Ganvir, Ashish
    Research & Technology, Department of Process Engineering, GKN Aerospace Engine Systems AB, 461 81 Trollhättan, Sweden.
    Jansson, Anton
    Örebro University, School of Science and Engineering, 701 82 Örebro, Sweden.
    Joshi, Shrikant V.
    Högskolan Väst, Institutionen för ingenjörsvetenskap, Forskningsmiljön produktionsteknik(PTW).
    Encapsulation of Electron Beam Melting Produced Alloy 718 to Reduce Surface Connected Defects by Hot Isostatic Pressing2020Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 13, nr 5, artikel-id 1226Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Defects in electron beam melting (EBM) manufactured Alloy 718 are inevitable to some extent, and are of concern as they can degrade mechanical properties of the material. Therefore, EBM-manufactured Alloy 718 is typically subjected to post-treatment to improve the properties of the as-built material. Although hot isostatic pressing (HIPing) is usually employed to close the defects, it is widely known that HIPing cannot close open-to-surface defects. Therefore, in this work, a hypothesis is formulated that if the surface of the EBM-manufactured specimen is suitably coated to encapsulate the EBM-manufactured specimen, then HIPing can be effective in healing such surface-connected defects. The EBM-manufactured Alloy 718 specimens were coated by high-velocity air fuel (HVAF) spraying using Alloy 718 powder prior to HIPing to evaluate the above approach. X-ray computed tomography (XCT) analysis of the defects in the same coated sample before and after HIPing showed that some of the defects connected to the EBM specimen surface were effectively encapsulated by the coating, as they were closed after HIPing. However, some of these surface-connected defects were retained. The reason for such remnant defects is attributed to the presence of interconnected pathways between the ambient and the original as-built surface of the EBM specimen, as the specimens were not coated on all sides. These pathways were also exaggerated by the high surface roughness of the EBM material and could have provided an additional path for argon infiltration, apart from the uncoated sides, thereby hindering complete densification of the specimen during HIPing.

    Ladda ner fulltext (pdf)
    fulltext
1 - 25 av 25
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf