Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Svenungsson, Josefine
    University West, Department of Engineering Science, Division of Welding Technology.
    Conduction laser welding: modelling of melt pool with free surface deformation2019Licentiate thesis, monograph (Other academic)
    Abstract [en]

    Laser welding is commonly used in the automotive-, steel- and aerospace industry. It is a highly non-linear and coupled process where the weld geometry is strongly affected by the flow pattern in the melt pool. Experimental observations are challenging since the melt pool and melt flow below the surface are not yet accessible during welding. Improved process control would allow maintaining, or improving, product quality with less material and contribute further to sustainability by reducing production errors. Numerical modelling with Computational Fluid Dynamics, CFD, provides complementary understanding with access to process properties that are not yet reachable with experimental observation. However, the existing numerical models lack predictability when considering the weld shape. The work presented here is the development of a model for conduction laser welding. The solver upon which the model is based is first described in detail. Then different validation cases are applied in order to test specific parts of the physics implemented. Two cases focus on thermocapillary convection in two-phase and three-phase flows with surface deformation. Finally, a third case considers the melt pool flow during conduction mode welding.It is concluded that the convection of fusion enthalpy, which was neglected in former studies, should be included in the model. The implementation of the thermo capillary force is recommended to be consistent with the other surface forces to avoid unphysical solution. Free surface oscillations, known from experimental observations, are also computed numerically. However, further investigation is needed to check that these oscillations are not disturbed b ynumerical oscillations.

  • 2.
    Svenungsson, Josefine
    University West, Department of Engineering Science, Division of Welding Technology.
    Keyhole laser process for welding Titanium alloy: modelling and experiment2016Conference paper (Other academic)
  • 3.
    Svenungsson, Josefine
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Choquet, Isabelle
    University West, Department of Technology, Mathematics and Computer Science, Division for Mechanical Engineering.
    Kaplan, Alexander F.H.
    Luleå University of Technology, Department of Engineering Science and Mathematics, 971 87 Luleå, Sweden.
    Laser Welding Process: A  Review of Keyhole Welding Modelling2015In: Physics Procedia, ISSN 1875-3892, E-ISSN 1875-3892, Vol. 78, p. 182-191Article in journal (Refereed)
    Abstract [en]

    Laser welding is used in several industrial applications. It can be distinguished between conduction mode and keyhole mode welding, between pulsed wave and cw laser welding and between CO2-lasers with a wavelength of 10 μm and various laser types of about 1 μm wavelength. A deeper understanding of laser welding allows improving weld quality, process control and process efficiency. It requires a complementary combination of precise modelling and experimental investigations. The here presented review focuses on modelling of laser keyhole welding, for both wavelength regimes. First, the fundamentals of the laser welding process and its physics such as beam propagation, keyhole formation and melt pool dynamics are addressed. The main approaches for modeling energy transfer from laser beam to keyhole surface as well as fluid flow in the material are then discussed. The most relevant publications are systematically structured, particularly categorized with regard to the respective physical phenomena addressed. Finally some open questions are underlined.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf