Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ossiansson, Mattias
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Löbel, M.
    Chemnitz University of Technology, Chemnitz (DEU).
    Lindner, T.
    Chemnitz University of Technology, Chemnitz (DEU).
    Lampke, T.
    Chemnitz University of Technology, Chemnitz (DEU).
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Assessment of CrFeCoNi and AlCrFeCoNi High-Entropy Alloys as Bond Coats for Thermal Barrier Coatings2022In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 31, p. 1404-1422Article in journal (Refereed)
    Abstract [en]

    High-entropy alloys (HEAs) represent a relatively new group of multicomponent alloys that have shown great potential for applications requiring tribological and oxidation resistant properties. Consequently, thermally sprayed coatings of different HEA chemistries have received increasing research attention. In this paper, atomized equimolar CrFeCoNi and AlCrFeCoNi feedstocks were used for high velocity air-fuel spraying (HVAF) to produce overlay coatings using two different nozzle configurations. The microstructure, phase constitution and hardness of the coatings were analyzed along with the primary aim of testing the coatings for their oxidation behavior. The performance of the two HEA chemistries was compared with two commercial MCrAlY coatings that are well-established bond coat materials for thermal barrier coatings (TBCs). An investigation was conducted to test the coatings’ performance as bond coats by applying suspension plasma sprayed yttria-stabilized zirconia top coats and evaluating the thermal cycling behavior of the TBCs. The AlCrFeCoNi-coating was found to demonstrate a lower oxidation rate than the CrFeCoNi-coating. However, the AlCrFeCoNi-coating was found to form more rapid oxide scales compared with the commercial bond coat material that also contained reactive elements. © 2022, The Author(s).

    Download full text (pdf)
    fulltext
  • 2.
    Uczak de Goes, Wellington
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Ossiansson, Mattias
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Honnerová, Petra
    University of West Bohemia, Pilsen (CZE).
    Veselý, Zdeněk
    University of West Bohemia, Pilsen (CZE).
    Influence of Spray Angle on Microstructure and Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings2022In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, no 31, p. 2068-2090Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBCs) are widely utilized in gas turbine engines for power generation. In recent years, the application of TBCs in automotive has been introduced to improve engine efficiency. Low thermal conductivity and high durability are desired coating properties for both gas turbine engines and automotive. Also, suspension plasma spraying (SPS) permits a columnar microstructure that combines both properties. However, it can be challenging to deposit a uniform columnar microstructure on a complex geometry, such as a gas turbine component or piston head, and achieve similar coating characteristics on all surfaces. This work’s objective was to investigate the influence of spray angle on the microstructure and lifetime of TBCs produced by SPS. For this purpose, SPS TBCs were deposited on specimens using different spray angles. The microstructures of the coatings were analyzed by image analysis for thickness, porosity, and column density. Thermal and optical properties were evaluated on each TBC. Lifetime tests, specifically designed for the two applications, were performed on all investigated TBCs. The lifetime results were analyzed with respect to the TBC microstructure and thermal and optical properties. This investigation showed that there is a limit to the spray angle that achieves the best compromise between TBC microstructure, thermal properties, optical properties, and lifetime. © 2022, The Author(s).

    Download full text (pdf)
    fulltext
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf