Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Tobisková, Nicole
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Gull, Erik Sanderson
    GKN Aerospace Sweden AB, Flygmotorvägen 1, 461 38 Trollhättan (SWE).
    Janardhanan, Swathanandan
    GKN Aerospace Sweden AB, Flygmotorvägen 1, 461 38 Trollhättan (SWE).
    Pederson, Thomas
    University West, School of Business, Economics and IT, Divison of Informatics.
    Malmsköld, Lennart
    University West, Department of Engineering Science, Division of Production Systems.
    Augmented Reality for AI-driven Inspection?: A Comparative Usability Study2023In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 119, p. 734-739Article in journal (Refereed)
    Abstract [en]

    Inspection in Aerospace industry can, as well as many other industrial applications, benefit from using Augmented Reality (AR) due to its ability to superimpose helpful digital information in 3D, leading to fewer errors and decreased mental demand. However, each AR device has advantages and disadvantages, and not all AR devices are suitable for use in industrial settings. We compare a tripod-fitted-adjustable-arm tablet-based AR solution (Apple iPad Pro) to head-mounted AR (Microsoft HoloLens 2) and a traditional, computer screen-based human-machine interface (HMI), all three designed to guide operators based on previously performed AI-based image analysis. Following an iterative design process with three formative evaluations, a final field test in a real industrial shop floor engaging 6 professional inspectors revealed an overall preference for the tripod-fitted iPad variant which receiving the best scores in most dimensions covered in both a usability-focused SUS questionnaire (score 71) and a NASA-RTLX form focused on perceived workload. More specifically, the tripod-fitted iPad was considered more usable (SUS) than the classic computer display HMI (M=5.83, SD=4.92, p=0.034, N=6); the temporal demand (NASA-RTLX) was considered lower using the iPad compared to both HoloLens 2 and the HMI (M=6.67, SD=4.08, p=0.010; M=10.83, SD=9.70, p=0.040, N=6), respectively. 

    Download full text (pdf)
    fulltext
  • 2.
    Tobisková, Nicole
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Malmsköld, Lennart
    University West, Department of Engineering Science, Division of Production Systems.
    Pederson, Thomas
    University West, School of Business, Economics and IT, Divison of Informatics.
    Head-Mounted Augmented Reality Support for Assemblers of Wooden Trusses2023In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 119, p. 134-139Article in journal (Refereed)
    Abstract [en]

    Wooden-house assembly is an area where still a big part of the work is done manually. In this case study, pairs of operators compose large wooden pieces together based on paper-print instructions complemented by visual guidance in the shape of laser marks projected from lasers mounted in the ceiling, based on Computer-aided design (CAD) data. Augmented Reality (AR) head-mounted displays (HMD) offer a unique platform for providing instructions and additional information superimposed in the work environment and thus can provide guidance in a cognitively ergonomic way. A particular advantage compared to other computing platforms is that the operators have free hands and can perform the manual work and follow guidance simultaneously. We present an evaluation of a prototype that dynamically transforms a CAD data file with design and measurements of wooden trusses to be manufactured, into an AR-based guidance system developed in Unity for Microsoft HoloLens 2 devices. We used an iterative participatory design process for prototyping and think-aloud protocol combined with observations for evaluation, involving professional assemblers in different stages of the process. Participants found the solution to potentially save time in their everyday work and simplify the task by offering increased visibility of the marks compared to the existing laser projection. Large-scale deployment of the system is still facing design challenges of which some are also discussed in the paper.  

    Download full text (pdf)
    fulltext
  • 3.
    Tobisková, Nicole
    et al.
    University West, Department of Engineering Science, Division of Production Systems.
    Malmsköld, Lennart
    University West, Department of Engineering Science, Division of Production Systems.
    Pederson, Thomas
    University West, School of Business, Economics and IT, Divison of Informatics.
    Multimodal Augmented Reality and Subtle Quidance for Industrial Assembly: A Survey and Ideation Method2022In: Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349, Vol. 13318 LNCS, p. 329-349Article in journal (Refereed)
    Abstract [en]

    Industrial manual assembly is a relatively established use case for emerging head-mounted Augmented Reality (AR) platforms: operators get visual support in placing pieces depending on where they are in the assembly process. However, is vision the only suitable sensory modality for such guidance? We present a systematic review of previous work done on multimodal guidance and subtle guidance approaches, confirming that explicit visual cues dominate. We then outline a three-step method for generating multisensory guidance ideas intended for real-world task support based on task observation that led to identification of 18 steps in truss assembly, brainstorming AR guidance approaches related to assembly and maintenance, and mapping of brainstorming results to the observed task. We illustrated the use of the method by deploying it on our current mission in producing AR guidance approaches for an industrial partner involved in designing and assembling wooden trusses. In this work, we went beyond the standard visual AR guidance in two ways, 1) by opening for guidance through auditory, tactile, and olfactory sensory channels, 2) by considering subtle guidance as alternative or complement to explicit information presentation. We presented a resulting set of multisensory guidance ideas, each tied to one of the 18 steps in the observed truss assembly task. To mention a few which we intend to investigate further: smell for gradual warning about non-imminent potential hazardous situations; 3D sound to guide operators to location of different tools; thermos-haptics for subtle notifications about contextual events (e.g., happening at other assembly stations). The method presented helped us to explore all modalities and to identify new possibilities. More work is needed to understand how different modalities can be combined and the impact of different modality distractions on task performance. © 2022, Springer Nature Switzerland AG.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf