Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Devotta, Ashwin
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Manufacturing Processes. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Löf, Ronnie
    Sandvik Coromant AB, Sandviken, Sweden.
    FE Modelling and Characterization of Chip Curl in Nose Turning processIn: International Journal of Machining and Machinability of Materials, ISSN 1748-572XArticle in journal (Refereed)
  • 2.
    Devotta, Ashwin Moris
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Characterization & modeling of chip flow angle & morphology in 2D & 3D turning process2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Within manufacturing of metallic components, machining plays an important role and is of vital significance to ensure process reliability. From a cutting tool design perspective,  tool macro geometry  design  based on physics based  numerical modelling  is highly needed  that can predict chip morphology.  The chip morphology describes the chip shape geometry and the chip curl geometry. The prediction of chip flow and chip shape is vital in predicting chip breakage, ensuring good chip evacuation and lower surface roughness.  To this end, a platform where such a  numerical model’s chip morphology prediction  can be compared with experimental investigation is needed and is the focus of this work. The studied cutting processes are orthogonal cutting process and nose turning process. Numerical models that simulate the chip formation process are employed to predict the chip morphology and are accompanied by machining experiments. Computed tomography is used  to scan the chips obtained from machining experiments and its ability to capture the variation in  chip morphology  is evaluated.  For nose turning process,  chip  curl parameters during the cutting process are to be calculated. Kharkevich model is utilized in this regard to calculate the  ‘chip in process’ chip curl parameters. High speed videography is used to measure the chip side flow angle during the cutting process experiments and are directly compared to physics based model predictions. The results show that the methodology developed provides  the framework where advances in numerical models can be evaluated reliably from a chip morphology prediction capability view point for nose turning process. The numerical modeling results show that the chip morphology variation for varying cutting conditions is predicted qualitatively. The results of quantitative evaluation of chip morphology prediction shows that the error in prediction is too large to be used for predictive modelling purposes.

  • 3.
    Devotta, Ashwin Moris
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Improved finite element modelingfor chip morphology prediction inmachining of C45E steel2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Within the manufacturing of metallic components, machining plays an important role and is of vital significance to ensure process reliability. From a cutting tool design perspective, physics-based numerical modeling that can predict chip morphology is highly necessary to design tool macro geometry. The chip morphology describes the chip shape geometry and the chip curl geometry. Improved chip morphology prediction increases process reliability by improved chip breakability and effective chip evacuation.

    To this end, in this work, a platform is developed to compare a numerical model'schip morphology prediction with experimental results. The investigated cuttingprocesses are orthogonal cutting process and nose turning process. Numerical models that simulate the chip formation process are used to predict the chip morphology accompanied by machining experiments. Computed tomography isused to scan the chips obtained from machining experiments evaluating its ability to capture the chip morphology variation. For the nose turning process, chip curl parameters need to be calculated during the cutting process. Kharkevich model is utilized in this regard for calculating the 'chip in process' chip curl parameters. High-speed videography is used to measure the chip side-flow angle during thecutting process experiments enabling comparison with physics-based model predictions.

    With regards to chip shape predictability, the numerical models that simulate the chip formation process are improved by improving the flow stress models and evaluating advanced damage models. The workpiece material, C45E steel, arecharacterized using Gleeble thermo-mechanical simulator. The obtained flow stress is modeled using phenomenological flow stress models. Existing phenomenological flow stress models are modified to improve their accuracy. The fracture initiation strain component of damage models' influence on the prediction of transition from continuous chip to segmented chip is studied. The flow stress models and the damage models are implemented in the numerical models through FORTRAN subroutines. The prediction of continuous to segmented chip transitions are evaluated for varying rake angles and feed rate ata constant cutting velocity.

    The results from the numerical model evaluation platform show that the methodology provides the framework where an advance in numerical models is evaluated reliably from a 'chip morphology prediction capability' viewpoint forthe nose turning process. The numerical modeling results show that the chip curl variation for varying cutting conditions is predicted qualitatively. The flow stress curves obtained through Gleeble thermo-mechanical simulator show dynamic strain aging presence in specific temperature -strain rate ranges. The results of the phenomenological model modification show their ability to incorporate the dynamic strain aging influence. The modified phenomenological model improvesthe accuracy of the numerical models' prediction accuracy. The flow stress models combined with advanced damage model can predict the transition from continuous to segmented chip. Within damage model, the fracture initiation strain component is observed to influence the continuous chip to segmented chip transition and chip segmentation intensity for varying rake angle and feed rate and at a constant cutting velocity.

  • 4.
    Devotta, Ashwin Moris
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Characterization of Chip Morphology in Oblique Nose Turning employing High Speed Videography and Computed Tomography Technique2016In: Proceedings International Conference on competitive Manufacturing: 27 January - 29 January 2016 Stellenbosch, South Africa organised By The department Of Industrial Engineering Stellenbosch University / [ed] Dimiter Dimitrov & Gert Adriaan Oosthuize, Department of Industrial Engineering Stellenbosch University , 2016, p. 249-254Conference paper (Refereed)
    Abstract [en]

    Simulation of industrial cutting processes employing physics based numerical models provide valuable insights into its deformation mechanics. Evaluating such models through chip studies require characterizing complex geometric features like chip shape, and chip curl. In this study, a characterization methodology is developed employing tools like computed tomography (CT) and high speed imaging. The methodology is used to characterize chip curl parameters such as chipside flow angle, chip up curl and chip side curl in oblique nose turning process. To evaluate the methodology, AISI 1045 steel is machined over a range of machining parameters and the chips obtained are characterized. The study shows that the employed methodology can be used to characterize varying chip curl geometries in nose turning process. CT technique is additionally employed when the chips are significantly deformed. The study also shows that the developed characterization methodology could be used to evaluate physics based numerical models.

  • 5.
    Devotta, Ashwin Moris
    et al.
    Sandvik Coromant AB, Sandviken, Sweden.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Eynian, Mahdi
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Simulation-Based Product Development Framework for Cutting Tool Geometry Design2019In: Conference Proceedings: International Conference on Competitive Manufacturing, COMA19, presented at Stellenbosch Univerisy, January 30 - February 1 2019, Stellenbosch University, Stellenbosch, South Africa. / [ed] Dimitrov, D., Hagedorn-Hansen, D. & Von Leipzig, K., Stellenbosch University , 2019, p. 47-52Conference paper (Refereed)
    Abstract [en]

    Cutting tool geometry design has traditionally relied on experimental studies; while engineering simulations, to the level of industrial deployment, have been developed only in the last couple of decades. With the development of simulation capability across length scales from micro to macro,cutting tool geometry development includes engineering data development for its efficient utilization. This calls for the design of a simulation-based approach in the design of cutting tool geometry so that the engineering data can be generated for different machining applications (e.g.digital twin). In this study, the needs for engineering model development of different stages of cutting tool design evaluation is assessed. To this end, some of the previously developed engineering models have been evaluated for evaluation of chip form morphology in industrially relevant nose turning process, work piece material behavior modeling and damage modeling for the prediction of chip shape morphology. The study shows the possibility for the developed models to act as building blocks of a digital twin. It also shows the need for engineering model development for different aspects of cutting tool design, its advantages, limitations, and prospects.

  • 6.
    Devotta, Ashwin Moris
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West. R&D Turning, Sandvik Coromant, Sandviken.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Löf, Ronnie
    R&D Turning, Sandvik Coromant, Sandviken.
    Finite element modelling and characterisation of chip curl in nose turning process2017In: International Journal of Machining and Machinability of Materials, E-ISSN 1748-572X, Vol. 19, no 3, p. 277-295Article in journal (Refereed)
    Abstract [en]

    Finite element (FE) modelling of machining provide valuable insights into its deformation mechanics. Evaluating an FE model predicted chip morphology requires characterisation of chip shape, chip curl and chip flow angles. In this study, a chip morphology characterisation methodology is developed using computed tomography (CT), high-speed imaging and Kharkevich model equations enabling evaluation of FE model’s chip morphology prediction accuracy. Chip formation process in nose turning of AISI 1045 steel is simulated using a 3D FE model for varying feed rate and depth of cut and evaluated against experimental investigations using the employed methodology. The study shows that the methodology is able to characterise chip morphology in nose turning process accurately and enables evaluation of FE model’s chip morphology prediction accuracy. This can enable the finite element model to be deployed in cutting tool design for chip breaker geometry design.

  • 7.
    Devotta, Ashwin Moris
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Löf, Ronnie
    Sandvik Coromant AB, Sandviken, Sweden.
    Modeling of Chip curl in Orthogonal Turning using Spiral Galaxy describing Function2016In: Proceedings International Conference on competitive Manufacturing: 27 January - 29 January 2016 Stellenbosch, South Africa organised By The department Of Industrial Engineering Stellenbosch University / [ed] Dimiter Dimitrov & Gert Adriaan Oosthuizen, Global Competitiveness Centre in Engineering Department of Industrial Engineering Stellenbosch University , 2016, p. 33-38Conference paper (Refereed)
    Abstract [en]

    With advances in modeling of machining process, a methodology for quantitative evaluation of the chip curl shape in orthogonal turning process is highly desired. To achieve this, a function to fit the varying chip curl was required. A mathematical function which is used to describe spiral galaxies is employed in this work which is able to accurately model wide variety of chip curl shapes. The function is employed to compare the chip curl predicted by numerical models with experimental investigations and it should be able to capture the variation of chip curl for varying cutting conditions ranging from tightly wound springs to comma shapes and the transition between them. This provides insights into the evaluation of cutting models from a practical view point. Finite element simulations were performed to predict the chip shape for varying tool rake angles and feed rates in orthogonal cutting process. The results show that the mathematical function was capable to model the wide variety of chip curl shapes encountered in orthogonal turning process.The chip curl predicted by the simulations show that numerical simulations need advanced models to depict work piece material behaviour, heat transfer behaviour and friction behaviour to predict the variation in chip curl shapes accurately for an orthogonal turning process.

  • 8.
    Devotta, Ashwin Moris
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West. Sandvik Coromant AB, Sandviken, Sweden.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Production Engineering. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Löf, Ronnie
    Sandvik Coromant AB, Sandviken, Sweden.
    Espes, Emil
    Sandvik Coromant AB, Stockholm, Sweden.
    Quantitative Characterization of Chip Morphology Using Computed Tomography in Orthogonal Turning Process2015In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 33, p. 299-304Article in journal (Refereed)
    Abstract [en]

    Abstract The simulation of machining process has been an area of active research for over two decades. To fully incorporate finite element (FE) simulations as a state of art tool design aid, there is a need for higher accuracy methodology. An area of improvement is the prediction of chip shape in FE simulations. Characterization of chip shape is therefore a necessity to validate the FE simulations with experimental investigations. The aim of this paper is to present an investigation where computed tomography (CT) is used for the characterization of the chip shape obtained from 2D orthogonal turning experiments. In this work, the CT method has been used for obtaining the full 3D representation of a machined chip. The CT method is highly advantageous for the complex curled chip shapes besides its ability to capture microscopic features on the chip like lamellae structure and surface roughness. This new methodology aids in the validation of several key parameters representing chip shape. The chip morphology’s 3D representation is obtained with the necessary accuracy which provides the ability to use chip curl as a practical validation tool for FE simulation of chip formation in practical machining operations. The study clearly states the ability of the new CT methodology to be used as a tool for the characterization of chip morphology in chip formation studies and industrial applications.

  • 9.
    Devotta, Ashwin Moris
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Siriki, Ravendra
    Sandvik Materials Technology, Sandviken, Sweden.
    Löf, Ronnie
    Sandvik Coromant AB, Sandviken, Sweden.
    Eynian, Mahdi
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Finite Element Modeling and Validation of Chip Segmentation in Machining of AISI 1045 Steel2017In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 58, p. 499-504Article in journal (Refereed)
    Abstract [en]

    The finite element (FE) method based modeling of chip formation in machining provides the ability to predict output parameters like cutting forces and chip geometry. One of the important characteristics of chip morphology is chip segmentation. Majority of the literature within chip segmentation show cutting speed (vc) and feed rate (f) as the most influencing input parameters. The role of tool rake angle (α) on chip segmentation is limited and hence, the present study is aimed at understanding it. In addition, stress triaxiality’s importance in damage model employed in FE method in capturing the influence of α on chip morphology transformation is also studied. Furthermore, microstructure characterization of chips was carried out using a scanning electron microscope (SEM) to understand the chip formation process for certain cutting conditions. The results show that the tool α influences chip segmentation phenomena and that the incorporation of a stress triaxiality factor in damage models is required to be able to predict the influence of the α. The variation of chip segmentation frequency with f is predicted qualitatively but the accuracy of prediction needs improvement. © 2017 The Authors.

  • 10.
    Devotta, Ashwin Moris
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West. R&D Turning, Sandvik Coromant AB, Sandviken, 811 81, Sweden.
    Sivaprasad, Palla Venkata
    R&D, Sandvik Materials Technology AB, Sandviken, 811 81, Sweden.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Eynian, Mahdi
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Hurtig, Kjell
    University West, Department of Engineering Science, Division of Welding Technology.
    Magnevall, Martin
    R&D, Sandvik Coromant AB, 811 81 Sandviken, Sweden; Blekinge Institute of Technology, Department of Mechanical Engineering, SE-371 41 Karlskrona, Sweden .
    Lundblad, Mikael
    R&D, Sandvik Coromant AB, 811 81 Sandviken, Sweden.
    A modified Johnson-Cook model for ferritic-pearlitic steel in dynamic strain aging regime2019In: Metals, ISSN 2075-4701, Vol. 9, no 5, article id 528Article in journal (Refereed)
    Abstract [en]

    In this study, the flow stress behavior of ferritic-pearlitic steel (C45E steel) is investigated through isothermal compression testing at different strain rates (1 s-1, 5 s-1, and 60 s-1) and temperatures ranging from 200 to 700 °C. The stress-strain curves obtained from experimental testing were post-processed to obtain true stress-true plastic strain curves. To fit the experimental data to well-known material models, Johnson-Cook (J-C) model was investigated and found to have a poor fit. Analysis of the flow stress as a function of temperature and strain rate showed that among other deformation mechanisms dynamic strain aging mechanism was active between the temperature range 200 and 400 °C for varying strain rates and J-C model is unable to capture this phenomenon. This lead to the need to modify the J-C model for the material under investigation. Therefore, the original J-C model parameters A, B and n are modified using the polynomial equation to capture its dependence on temperature and strain rate. The results show the ability of the modified J-C model to describe the flow behavior satisfactorily while dynamic strain aging was operative. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf