We generalize an injectivity result obtained by Bayer-Fluckiger and Lenstra concerning pointed cohomology sets, defined by norm-one groups of finite-dimensional algebras with involution over fields k of characteristic different from 2, to the case of inverse limits of finite-dimensional k-algebras with involution. We use this generalization to obtain a result about self-dual normal bases for infinite Galois field extensions.

University West, Department of Engineering Science, Division of Mathematics, Computer and Surveying Engineering.

Öinert, Johan

Blekinge Institute of Technology, Department of Mathematics and Natural Sciences, Karlskrona, Sweden.

Pinedo, Héctor

Universidad Industrial de Santander, Escuela de Matemáticas, Carrera 27 Calle 9, Edificio Camilo Torres Apartado de correos 678, Bucaramanga, Colombia.

Let alpha = {alpha(g) : Rg-1 -> R-g}(g is an element of mor(G)) be a partial action of a groupoid G on a (not necessarily associative) ring R and let S = R-star alpha G be the associated partial skew groupoid ring. We show that if a is global and unital, then S is left (right) artinian if and only if R is left (right) artinian and R-g = {0}, for all but finitely many g is an element of mor(G). We use this result to prove that if a is unital and R is alternative, then S is left (right) artinian if and only if R is left (right) artinian and R-g = {0}, for all but finitely many g is an element of mor(G). This result applies to partial skew group rings, in particular. Both of the above results generalize a theorem by J. K. Park for classical skew group rings, i.e. the case when R is unital and associative, and G is a group which acts globally on R. We provide two additional applications of our main results. Firstly, we generalize I. G. Connell's classical result for group rings by giving a characterization of artinian (not necessarily associative) groupoid rings. This result is in turn applied to partial group algebras. Secondly, we give a characterization of artinian Leavitt path algebras. At the end of the article, we relate noetherian and artinian properties of partial skew groupoid rings to those of global skew groupoid rings, as well as establish two Maschke-type results, thereby generalizing results by M. Ferrero and J. Lazzarin for partial skew group rings to the case of partial skew groupoid rings.

University West, Department of Engineering Science, Division of Mathematics, Computer and Surveying Engineering.

Öinert, Johan

Blekinge Institute of Technology, Department of Mathematics and Natural Sciences, Karlskrona, SE-37179, Sweden.

Pinedo, Héctor

Universidad Industrial de Santander, Escuela de Matemáticas, Carrera 27 Calle 9, Edificio Camilo Torres Apartado de correos 678, Bucaramanga, Colombia.