Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kiamehr, Ramin
    et al.
    Department of Geodesy and Geomatics, Zanjan University, Zanjan, Iran.
    Eshagh, Mehdi
    Division of Geodesy, Royal Institute of Technology, Stockholm.
    Sjöberg, Lars E.
    Division of Geodesy, Royal Institute of Technology, Stockholm.
    Interpretation of the general geophysical patterns of Iran based on the gradient components analysis of the GRACE2008In: Acta Geophysica, ISSN 1895-6572, E-ISSN 1895-7455, Vol. 56, no 2, p. 440-454Article in journal (Refereed)
    Abstract [en]

    Only with satellites it is possible to cover the entire Earth densely with gravityfield related measurements of uniform quality within a short period of time. However,due to the altitude of the satellite orbits, the signals of individual local massesare strongly damped. Based on the approach of Petrovskaya and Vershkov we determinethe gravity gradient tensor directly from the spherical harmonic coefficientsof the recent EIGEN-GL04C combined model of the GRACE satellite mission. Satellitegradiometry can be used as a complementary tool to gravity and geoid informationin interpreting the general geophysical and geodynamical features of theEarth. Due to the high altitude of the satellite, the effects of the topography and theinternal masses of the Earth are strongly damped. However, the gradiometer data,which are nothing else than the second order spatial derivatives of the gravity potential,efficiently counteract signal attenuation at the low and medium frequencies.In this article we review the procedure for estimating the gravity gradientcomponents directly from spherical harmonics coefficients. Then we apply thismethod as a case study for the interpretation of possible geophysical or geodynamicalpatterns in Iran. We found strong correlations between the cross-components ofthe gravity gradient tensor and the components of the deflection of vertical, and weshow that this result agrees with theory. Also, strong correlations of the gravityanomaly, geoid model and a digital elevation model were found with the diagonalelements of the gradient tensor.

  • 2.
    Sprlak, Michal
    et al.
    University of West Bohemia, NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, Plzeň, Czech Republic.
    Eshagh, Mehdi
    University West, Department of Engineering Science, Division of Computer, Electrical and Surveying Engineering.
    Local recovery of sub-crustal stress due to mantle convection from satellite-to-satellite tracking data2016In: Acta Geophysica, ISSN 1895-6572, E-ISSN 1895-7455, Vol. 64, no 4, p. 904-929Article in journal (Refereed)
    Abstract [en]

    Two integral transformations between the stress function, differentiation of which gives the meridian and prime vertical components of the sub-crustal stress due to mantle convection, and the satellite-to-satellite tracking (SST) data are presented in this article. In the first one, the SST data are the disturbing potential differences between twin-satellites and in the second one the line-of-sight (LOS) gravity disturbances. It is shown that the corresponding integral kernels are well-behaving and therefore suitable for inversion and recovery of the stress function from the SST data. Recovery of the stress function and the stress components is also tested in numerical experiments using simulated SST data. Numerical studies over the Himalayas show that inverting the disturbing potential differences leads to a smoother stress function than from inverting LOS gravity disturbances. Application of the presented integral formulae allows for recovery of the stress from the satellite mission GRACE and its planned successor. © 2016 Šprlak and Eshagh.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf