Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Agic, Adnan
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. Seco Tools, Fagersta, Sweden.
    Eynian, Mahdi
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Ståhl, J. -E
    Lund University, Production and Materials Engineering, Lund, Sweden.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Dynamic effects on cutting forces with highly positive versus highly negative cutting edge geometries2019In: International Journal on Interactive Design and Manufacturing, ISSN 1955-2513, E-ISSN 1955-2505Article in journal (Refereed)
    Abstract [en]

    Understanding the influence of the cutting edge geometry on the development of cutting forces during the milling process is of high importance in order to predict the mechanical loads on the cutting edge as well as the dynamic behavior on the milling tool. The work conducted in this study involves the force development over the entire engagement of a flute in milling, from peak force during the entry phase until the exit phase. The results show a significant difference in the behavior of the cutting process for a highly positive versus a highly negative cutting edge geometry. The negative edge geometry gives rise to larger force magnitudes and very similar developments of the tangential and radial cutting force. The positive cutting edge geometry produces considerably different developments of the tangential and radial cutting force. In case of positive cutting edge geometry, the radial cutting force increases while the uncut chip thickness decreases directly after the entry phase; reaching the peak value after a certain delay. The radial force fluctuation is significantly higher for the positive cutting edge geometry. The understanding of such behavior is important for modelling of the milling process, the design of the cutting edge and the interactive design of digital applications for the selection of the cutting parameters.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf