Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Li, Peigang
    et al.
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Svensson, Lars-Erik
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Study on temperature influence on lack of fusion formation in spatter/base metal interface2014In: Advanced Materials Research, ISSN 1022-6680, E-ISSN 1662-8985, Vol. 875 - 877, p. 1421-1428Article in journal (Refereed)
    Abstract [en]

    In the development of modern welded structures with longer life-time and/or higher load-carrying ability, fatigue properties are becoming more and more important. A lot of researches have been done to investigate which factors can elongate the fatigue life of weldments. Cold lap defects, were found to be important initiation sites of the fatigue failure in 1990s. In the ISO standard, cold lap is referred to as a type of micro-lack of fusion. Previous study found that most of the cold laps in GMAW process are formed in spatters. In this paper the interface of spatter/base metal was cut, polished and investigated by conventional metallographic methods. The aim is to reveal the influence of temperature on cold lap formation. In the experiments, different pre-heating temperatures of the parent plate were used in tandem GMAW. Results showed linear empirical relationship between the temperature of the parent plate and the amount of lack of fusion in the spatter/base metal interface.

  • 2.
    Wanner, Bertil
    et al.
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Eynian, Mahdi
    University West, Department of Engineering Science, Division of Mechanical Engineering. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Mechanical Engineering. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Pejryd, Lars
    University West, Department of Engineering Science, Division of Production Engineering.
    Cutter Exit Effects during Milling of Thin-walled Inconel 7182012In: Advanced Materials Research, ISSN 1022-6680, E-ISSN 1662-8985, Vol. 590, p. 297-308Article in journal (Refereed)
    Abstract [en]

    During milling of thin-walled components, chatter vibrations give rise to process issues. These include dimensional inaccuracy, damaged and scrap parts, and damaged cutting tools. This, in turn, leads to loss of production time with increasing cost as a consequence. This paper identifies the force profile during a single cut milling process. It focuses on the exit and post-exit behavior of the cut and discusses the process dynamics. The force profiles of various tool-to-workpiece positions are analyzed as regards the exit and post exit phases. A standard on-the-market cutter and a specially designed zero rake cutter are used in the investigation. Finally, a time-domain simulation of the force is performed and compared to the experimental results. The study concludes that a small change in exit angle may result in a considerable improvement in cutting behavior. In addition, the tool position should be chosen so that the cutter exits in the least flexible direction possible for the workpiece.

  • 3.
    Wanner, Bertil
    et al.
    University West, Department of Engineering Science, Division of Production Engineering.
    Eynian, Mahdi
    University West, Department of Engineering Science, Division of Production Engineering.
    Beno, Tomas
    University West, Department of Engineering Science, Division of Production Engineering. University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Pejryd, Lars
    University West, Department of Engineering Science, Division of Production Engineering.
    Milling Strategies for Thin-walled Components2012In: Advanced Materials Research, ISSN 1022-6680, E-ISSN 1662-8985, Vol. 498, p. 177-182Article in journal (Refereed)
    Abstract [en]

    Recent developments in the Aerospace industry have led to thin-walled, reduced-weight engine designs. Due to demands in manufacturing, production speeds and material removal rates (MRR) have increased. As component wall thickness gets thinner, the consequence oftentimes is an increase in chatter vibrations. This paper suggests that a correctly chosen tool-to-workpiece offset geometry may lead to a robust and chatter-free process. The results show the differences in force response for three geometries while varying the overhang of the workpiece. This is part of a concerted effort to develop a robust methodology for the prediction of chatter vibrations during milling operations of thin-walled Aerospace components. This paper outlines certain robust machining practices. It also analyzes the criticality of the choice of offset between tool and workpiece during milling setup as well as the effects that the entry and exit of cut have on system vibrations.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf