Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Barick, Prasenjit
    et al.
    International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad-500005, Telangana, India.
    Saha, Bhaskar Prasad
    International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad-500005, Telangana, India.
    Joshi, Shrikant
    University West, Department of Engineering Science, Research Enviroment Production Technology West. International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur Post, Hyderabad-500005, Telangana, India.
    Mitra, Rahul
    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
    Spray-freeze-dried nanosized silicon carbide containing granules: Properties, compaction behaviour and sintering2016In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 36, no 16, p. 3863-3877Article in journal (Refereed)
    Abstract [en]

    Spherical granules comprising silicon carbide nanoparticles have been produced with the help of sprayfreeze-drying (SFD) technique. The effect of solid loading of slurries on rheological properties, flowability and morphology of the resulting SFD granules has been studied. Further, a systematic study has been performed to investigate the effect of applied pressures and granule density on the relative densities and microstructures of the green compacts. A marginal increase in viscosity is noted as the solid content of slurries increases from 5 to 15 vol% with significant increase in viscosity being observed in case of 18 vol% slurry. The granules prepared from SiC slurries are spherical in shape with their mean size, density, gravimetric flow rate, and yield strength increasing with the increase in solid content. The mechanical properties of sintered SiC produced from SFD granules are found relatively superior to that made from commercially available spray-dried (SD) granules.

  • 2.
    Ganvir, Ashish
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Calinas, Rosa Filomena
    Innovnano Materials, Coimbra, Portugal.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Curry, Nicholas
    Treibacher Industries AG, Althofen, Austria.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Experimental visualization of microstructure evolution during suspension plasma spraying of thermal barrier coatings2019In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 39, no 2-3, p. 470-481Article in journal (Refereed)
    Abstract [en]

    This paper investigates the evolution of microstructure of thermal barrier coatings (TBCs) produced by suspension plasma spraying (SPS) through a careful experimental study. Understanding the influence of different suspension characteristics such as type of solvent, solid load content and median particle size on the ensuing TBC microstructure, as well as visualizing the early stages of coating build-up leading to formation of a columnar microstructure or otherwise, was of specific interest. Several SPS TBCs with different suspensions were deposited under identical conditions (same substrate, bond coat and plasma spray parameters). The experimental study clearly revealed the important role of suspension characteristics, namely surface tension, density and viscosity, on the final microstructure, with study of its progressive evolution providing invaluable insights. Variations in suspension properties manifest in the form of differences in droplet momentum and trajectory, which are found to be key determinants governing the resulting microstructure (e.g., lamellar/vertically cracked or columnar).

  • 3.
    Ganvir, Ashish
    et al.
    University of Turku, (FIN).
    Nagar, Sainyam
    Indian Institute of Technology, Kanpur (IND).
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Balani, Kantesh
    Indian Institute of Technology, Kanpur (IND).
    Deposition of hydroxyapatite coatings by axial plasma spraying: Influence of feedstock characteristics on coating microstructure, phase content and mechanical properties2021In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 41, no 8, p. 4637-4649Article in journal (Refereed)
    Abstract [en]

    Axial plasma spray is one of the thermal spray techniques to deposit multifunctional advanced coatings. The present work explores the use of this process to deposit thin, continuous, and adherent Ca5 (PO4)3OH (hydroxyapatite, HAp) coatings and characterize its microstructure, phases, hardness and adhesion strength. Three different suspension-deposited HAp coatings were investigated and compared with powder-deposited HAp coating on a Ti6Al4V substrate. The effect of mean solute particle size and solid-loading in the suspension has been explored on the evolution of microstructure, phase content and mechanical properties of axial suspension plasma sprayed (ASPS) coatings. Phase-characterization has shown retention of hydroxyapatite phase and coating crystallinity in the deposited coatings, whereas the adhesion strength of the HAp coating decreased from -40 MPa to -13 MPa when bioglass was added to the feedstock material. The lower solid load content and lower mean solute particle size in the suspension were found to be beneficial in achieving porous, rougher, and welladhering coatings. This work concludes that ASPS can potentially deposit thin HAp coatings (< 50 ?m) with high adhesion strength.

    Download full text (pdf)
    fulltext
  • 4.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Li, X-H
    Siemens Turbomachinery AB, Finspang, Sweden.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Kjellman, Björn
    GKN Aerosp, Trollhattan, Sweden.
    Design of high lifetime suspension plasma sprayed thermal barrier coatings2020In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 40, no 3, p. 768-779Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBCs) fabricated by suspension plasma spraying (SPS) have shown improved performance due to their low thermal conductivity and high durability along with relatively low production cost. Improvements in SPS TBCs that could further enhance their lifetime would lead to their widespread industrialisation. The objective of this study was to design a SPS TBC system with optimised topcoat microstructure and topcoat bondcoat interface, combined with appropriate bondcoat microstructure and chemistry, which could exhibit high cyclic lifetime. Bondcoat deposition processes investigated in this study were high velocity air fuel (HVAF) spraying, high velocity oxy fuel spraying, vacuum plasma spraying, and diffusion process. Topcoat microstructure with high column density along with smooth topcoat bondcoat interface and oxidation resistant bondcoat was shown as a favourable design for significant improvements in the lifetime of SPS TBCs. HVAF sprayed bondcoat treated by shot peening and grit blasting was shown to create this favourable design.

  • 5. Sivakumar, G.
    et al.
    Dusane, R. O.
    Joshi, S. V.
    A novel approach to process phase pure α-Al2O3 coatings by solution precursor plasma spraying2013In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 33, no 13-14, p. 2823-2829Article in journal (Refereed)
    Abstract [en]

    The present work represents a significant new approach in the field of thermal spraying to deposit nanostructured phase-pure α-Al2O3 coatings in a single step. In order to understand the mechanism of coating formation, a detailed investigation of in flight formed particles and splat morphologies has been carried out. A plausible deposition mechanism has been proposed based on the understanding derived from the above studies that can form the basis for developing novel ceramic coatings employing the solution precursor plasma spray technique. © 2013 Elsevier Ltd.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf