Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Dineshram, R.
    et al.
    Subasri, R.
    Somaraju, K. R. C.
    Jayaraj, K.
    Vedaprakash, L.
    Ratnam, K.
    Joshi, S. V.
    Venkatesan, R.
    Biofouling studies on nanoparticle-based metal oxide coatings on glass coupons exposed to marine environment2009In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 74, no 1, p. 75-83Article in journal (Refereed)
    Abstract [en]

    Titania, niobia and silica coatings, derived from their respective nanoparticle dispersions or sols and fabricated on soda lime glass substrates were subjected to field testing in marine environment for anti-macrofouling applications for marine optical instruments. Settlement and enumeration of macrofouling organisms like barnacles, hydroides and oysters on these nanoparticle-based metal oxide coatings subjected to different heat treatments up to 400 degrees C were periodically monitored for a period of 15 days. The differences observed in the antifouling behaviour between the coated and uncoated substrates are discussed based on the solar ultraviolet light induced photocatalytic activities as well as hydrophilicities of the coatings in case of titania and niobia coatings and the inherent hydrophilicity in the case of silica coating. The effect of heat treatment on the photocatalytic activity of the coatings is also discussed. (C) 2009 Elsevier B.V. All rights reserved.

  • 2.
    Hameed, Pearlin
    et al.
    Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore, 632014, India.
    Gopal, Vasanth
    Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore, 632014, India; Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
    Björklund, Stefan
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Ganvir, Ashish
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Sen, Dwaipayan
    Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore, 632014, India.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Manivasagam, Geetha
    Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore, 632014, India.
    Axial Suspension Plasma Spraying: An ultimate technique to tailor Ti6Al4V surface with HAp for orthopaedic applications2019In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 173, p. 806-815Article in journal (Refereed)
    Abstract [en]

    Dissolution of atmospheric plasma sprayed (APS) hydroxyapatite (HAp) coatings on Ti-6Al-4 V medical implants have always been a challenge to overcome in the field of biomedical industry. In the present work, an attempt has been made to develop a HAp coating using a novel thermal spray process called axial suspension plasma spraying (SPS), which leads to thin adherent coatings. Two HAp coatings fabricated by APS (P1 and P2) and four SPS HAp coatings (S1, S2, S3 and S4) produced with varying spraying parameters were characterized in terms of (1) microstructure, porosity, hardness, adhesion strength, contact angle and phase purity; (2) corrosion resistance in 10% Fetal bovine serum (FBS); (3) in-vitro cell adherence and cell viability using human umbilical cord blood-derived mesenchymal stem cells (hMSCs). Amongst different APS and SPS coatings, P1 and S3 exhibited superior properties. S3 coating developed using SPS exhibited 1.3 times higher adhesion strength when compared to APS coating (P1) and 9.5 times higher corrosion resistance than P1. In addition, both S3 and P1 exhibited comparatively higher biocompatibility as evidenced by the presence of more than 92% viable hMSCs. © 2018 Elsevier B.V.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf