Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Shariff, S. M.
    et al.
    Pal, T. K.
    Padmanabham, G.
    Joshi, S. V.
    Comparative Study on Dry Sliding Wear Behavior of Various Railroad Steels2011In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 133, no 2, p. 9-Article in journal (Refereed)
    Abstract [en]

    Understanding the wear behavior of various railroad steels used in different components such as rails, wheels, crossings, and curves has a direct impact on the performance of the rail-wheel system in railroad technology. In the present investigation, the wear behavior of steels having varying microstructures (pearlite, ferrite-pearlite, austenite, and bainite) and different chemical compositions has been studied, utilizing a ball-on-disk sliding tribometer under prototypic load and dry conditions. Results indicate that the wear performance of the steel and the mechanism responsible for its wear are significantly governed by the microstructure as well as changes that occur in the contact region during sliding. The formation of tribo-particles comprising oxides of Fe and their possible smearing resulted in high wear resistance in pearlitic steels with considerable plastic deformation of ferrite lamellae compared with austenitic and bainitic steels. In the case of bainitic steel, the absence of any significant smearing of oxide debris, combined with the presence of some distributed tungsten from the ball, contributed to severe wear. On the other hand, in the case of austenitic steel, third-body abrasion by debris particles, comprising a mix of hard metallic and oxide particles, contributed to severe wear despite its high work-hardening ability. On the whole, the pearlitic steel exhibited superior wear resistance with a lower friction coefficient compared with the bainitic and austenitic steels. [DOI:10.1115/1.4003485]

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf