Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mehrabi, M.
    et al.
    Clean Energy Research Group, Department of Mechanical and Aeronautical Engineering, University of Pretoria,Hatfield (ZAF).
    Noori Rahim Abadi, Seyyed Mohammad Ali
    University West, Department of Engineering Science, Division of Welding Technology.
    Modeling of condensation heat transfer coefficients and flow regimes in flattened channels2021In: International Communications in Heat and Mass Transfer, ISSN 0735-1933, E-ISSN 1879-0178, Vol. 126, article id 105391Article in journal (Refereed)
    Abstract [en]

    In this paper, an adaptive neuro-fuzzy inference system (ANFIS) with fuzzy C-means clustering (FCM) structure identification is proposed to model condensation heat transfer and flow regimes in flattened smooth tubes with different aspect ratios. The FCM-ANFIS model was trained by using experimental data points for six effective chosen parameters of saturation temperature, heat flux, mass flux, aspect ratio and hydraulic diameter of the flattened tube, and vapor quality. Three flow regimes of annular flow, stratified, and intermittent flow were linked to the effective parameters based on the experimental data. Two models were proposed to predict the condensation heat transfer coefficient and the flow regime of R134a and R410a in flattened smooth tubes. Three statistical criteria were used to ascertain the accurateness of the models compared to the experimental results. It is found that while among benchmarked cases, the proposed model for the condensation heat transfer coefficient performs well, the best result with the lowest error (MAE = 0.029, RMSE = 0.036 and MRE = 2.83%) is when T-sat = 45 degrees C, q ‘’ = 10 kW/m(2), G = 100 kg/m(2). s, beta = 6 and D-h = 2.3 mm. On the other hand, in the worst-performing case when the errors are MAE = 0.239, RMSE = 0.239 and MRE = 13.36%, the predicted results are still in the uncertainty range of the experimental result when T-sat = 45 degrees C, q ‘’ = 5 kW/m(2), G = 200 kg/m(2). s, beta = 6 and D-h = 2.3 mm.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf