Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bandyopadhyay, S.
    et al.
    Gokhale, H.
    Sundar, J. K. S.
    Sundararajan, G.
    Joshi, S. V.
    A statistical approach to determine process parameter impact in Nd: YAG laser drilling of IN718 and Ti-6Al-4V sheets2005In: Optics and lasers in engineering, ISSN 0143-8166, E-ISSN 1873-0302, Vol. 43, no 2, p. 163-182Article in journal (Refereed)
    Abstract [en]

    The numerous unique advantages afforded by pulsed Nd:YAG laser systems have led to their increasing utility for producing high aspect ratio holes in a wide range of materials. Notwithstanding the growing industrial acceptance of the technique, the increasingly tighter geometrical tolerances and more stringent hole quality requirements of modern industrial components demand that "defects" such as taper, recast, spatter etc., in laser-drilled holes are minimized. Process parameters like pulse energy, pulse repetition rate, pulse duration, focal position, nozzle standoff, type of gas and gas pressure of the assist gas are known to significantly influence hole quality during laser drilling. The present study reports the use of Taguchi design of experiments technique to study the effects of the above process variables on the quality of the drilled holes and ascertain optimum processing conditions. Minimum taper in the drilled hole was considered as the desired target response. The entire study was conducted in three phases:(a) screening experiments, to identify process variables that critically influence taper in laser drilled holes, (b) Optimization experiments, to ascertain the set of parameters that would yield minimum taper and (c) validation trials, to assess the validity of the experimental procedures and results. Results indicate that laser drilling with focal position on the surface of the material being drilled and employing low level values of pulse duration and pulse energy represents the ideal conditions to achieve minimum taper in laser-drilled holes. Thorough assessment of results also reveals that the laser-drilling process, optimized considering taper in the drilled hole as the target response, leads to very significant improvements in respect of other hole quality attributes of interest such as spatter and recast as well. © 2004 Elsevier Ltd. All rights reserved.

  • 2.
    Hagqvist, Petter
    et al.
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    Heralic, Almir
    University West, Department of Engineering Science, Division of Electrical and Automation Engineering.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    Lennartson, Bengt
    Chalmers.
    Resistance measurements for control of laser metal wire deposition2014In: Optics and lasers in engineering, ISSN 0143-8166, E-ISSN 1873-0302, Vol. 54, no March, p. 62-67Article in journal (Refereed)
    Abstract [en]

    A method for controlling robotized laser metal wire deposition online by electrical resistance metering is proposed. The concept of measuring the combined resistance of the wire and the weld pool is introduced and evaluated for automatic control purposes. Droplet formation, detachment of the wire from the weld pool and stubbing can be hard to avoid during processing due to the sensitive process and short reaction times needed for making on-line adjustments. The implemented system shows a possible route for automatic control of the process wherein such problems can be avoided automatically. The method proves to successfully adjust the distance between the tool and the workpiece through controlling the robot height position, thus increasing stability of the laser metal wire deposition process.

  • 3.
    Heralic, Almir
    et al.
    University West, Department of Engineering Science, Division of Electrical and Automation Engineering.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Electrical and Automation Engineering.
    Lennartson, Bengt
    Dep of signal and systems, Chalmers.
    Height control of laser metal-wire deposition based on iterative learning control and 3D scanning2012In: Optics and lasers in engineering, ISSN 0143-8166, E-ISSN 1873-0302, Vol. 50, no 9, p. 1230-1241Article in journal (Refereed)
    Abstract [en]

    Laser Metal-wire Deposition is an additive manufacturing technique for solid freeform fabrication of fully dense metal structures. The technique is based on robotized laser welding and wire filler material, and the structures are built up layer by layer. The deposition process is, however, sensitive to disturbances and thus requires continuous monitoring and adjustments. In this work a 3D scanning system is developed and integrated with the robot control system for automatic in-process control of the deposition. The goal is to ensure stable deposition, by means of choosing a correct offset of the robot in the vertical direction, and obtaining a flat surface, for each deposited layer. The deviations in the layer height are compensated by controlling the wire feed rate on next deposition layer, based on the 3D scanned data, by means of iterative learning control. The system is tested through deposition of bosses, which is expected to be a typical application for this technique in the manufacture of jet engine components. The results show that iterative learning control including 3D scanning is a suitable method for automatic deposition of such structures. This paper presents the equipment, the control strategy and demonstrates the proposed approach with practical experiments.

  • 4.
    Heralic, Almir
    et al.
    University West, Department of Engineering Science, Division of Electrical and Automation Engineering.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Electrical and Automation Engineering.
    Ottosson, Mattias
    University West, Department of Engineering Science, Division of Electrical and Automation Engineering.
    Lennartson, Bengt
    Chalmers Tekniska Högskola.
    Increased stability in laser metal wire deposition through feedback from optical measurements2010In: Optics and lasers in engineering, ISSN 0143-8166, E-ISSN 1873-0302, Vol. 48, no 4, p. 478-485Article in journal (Refereed)
    Abstract [en]

    Robotized laser metal-wire deposition is a fairly new technique being developed at University West in cooperation with Swedish industry for solid freeform fabrication of fully densed metal structures. It is developed around a standard welding cell and uses robotized fiber laser welding and wire filler material together with a layered manufacturing method to create metal structures. In this work a monitoring system, comprising two cameras and a projected laser line, is developed for on-line control of the deposition process. The controller is a combination of a PI-controller for the bead width and a feed-forward compensator for the bead height. It is evaluated through deposition of single-bead walls, and the results show that the process stability is improved when the proposed controller is used.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf