Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Asala, G.
    et al.
    University of Manitoba, Winnipeg, R3T 5V6, Canada .
    Andersson, Joel
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Ojo, Olanrewaj A.
    University of Manitoba, Winnipeg, R3T 5V6, Canada .
    Precipitation behavior of gamma′ precipitates in the fusion zone of TIG welded ATI 718Plus®2016In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 87, no 9-12, 2721-2729 p.Article in journal (Refereed)
    Abstract [en]

    The precipitation behavior of the main strengthening phase, γ′ precipitates, in ATI 718Plus® superalloy after Tungsten Inert Gas (TIG) welding and postweld heat treatments has been studied. In contrast to electron beam welding, where no γ′ precipitates are reported to form in the as-welded condition, analytical transmission electron microscopy study in this work revealed the formation of γ′ precipitates after the TIG welding, albeit in a non-uniform distribution manner. This is attributable to a more extensive elemental microsegregation that occurred into the interdendritic liquid and slower cooling rate during the TIG welding, which also induced the formation of interdendritic Nb-rich Laves phase particles and MC-type carbides. Theoretical calculations were performed to study the influence of Nb microsegregation, on both the kinetics and extent of γ′ precipitation, and the results agree with experimental observations. It is found that the precipitation kinetics, and not the extent of γ′ precipitate formation in the fusion zone, during postweld heat treatments is affected by the micro-segregation of Nb that produced Laves phase particles during the weld solidification.

  • 2.
    De Backer, Jeroen
    et al.
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    Bolmsjö, Gunnar
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    Temperature control of robotic friction stir welding using the thermoelectric effect2014In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 70, no 1-4, 375-383 p.Article in journal (Refereed)
    Abstract [en]

    Friction stir welding (FSW) of non-linear joints receives an increasing interest from several industrial sectors like automotive, urban transport and aerospace. A force-controlled robot is particularly suitable for welding complex geometries in lightweight alloys. However, complex geometries including three-dimensional joints, non-constant thicknesses and heat sinks such as clamps cause varying heat dissipation in the welded product. This will lead to changes in the process temperature and hence an unstable FSW process with varying mechanical properties. Furthermore, overheating can lead to a meltdown, causing the tool to sink down into the workpiece. This paper describes a temperature controller that modifies the spindle speed to maintain a constant welding temperature. A newly developed temperature measurement method is used which is able to measure the average tool temperature without the need for thermocouples inside the tool. The method is used to control both the plunging and welding operation. The developments presented here are applied to a robotic FSW system and can be directly implemented in a production setting.

  • 3.
    Ericson Öberg, Anna
    et al.
    Chalmers, Gothenburg, Sweden.
    Åstrand, Erik
    University West, Department of Engineering Science, Research Enviroment Production Technology West. Volvo Construct Equipment, Braås, Sweden.
    Improved productivity by reduced variation in gas metal arc welding (GMAW)2017In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 92, no 1-4, 1027-1038 p.Article in journal (Other academic)
    Abstract [en]

    The purpose of the research conducted is to describe the consequences of variation in the welding industry and the effect it has on manufacturing productivity. The potential has shown to be hidden in unnecessarily stringent requirements and over-processing. This has been studied in steps: customer requirements, design and analysis, preparation, welding, and assessment. The effect of variation in each step has been analyzed including estimations of its productivity improvement potential. Theoretically, in a perfect situation, with customized requirements and eliminated variation, more than half of all welding could be removed. Such a reduction is certainly neither practical nor possible. However, a sensible, controlled reduction could still have a very high impact. The financial implications are therefore substantial. The improved productivity of the manufacturing resources could be used for business development and increased production. To be able to realize the potential, interdisciplinary efforts are necessary. Management across different functions need to agree on the intended product life and make decisions thereafter.

  • 4.
    Glorieux, Emile
    et al.
    University West, Department of Engineering Science, Division of Automation Systems.
    Danielsson, Fredrik
    University West, Department of Engineering Science, Division of Automation Systems.
    Svensson, Bo
    University West, Department of Engineering Science, Division of Automation Systems.
    Lennartson, Bengt
    University West, Department of Engineering Science, Division of Automation Systems. Chalmers University of Technology, Department of Signals and Systems, Gothenburg, Sweden.
    Constructive cooperative coevolutionary optimisation for interacting production stations2015In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 78, no 1-4, 673-688 p.Article in journal (Refereed)
    Abstract [en]

    Optimisation of the control function for multiple automated interacting production stations is a complex problem, even for skilled and experienced operators or process planners. When using mathematical optimisation techniques, it often becomes necessary to use simulation models to represent the problem because of the high complexity (i.e. simulation-based optimisation). Standard optimisation techniques are likely to either exceed the practical time frame or under-perform compared to the manual tuning by the operators or process planners. This paper presents the Constructive cooperative coevolutionary (C3) algorithm, which objective is to enable effective simulation-based optimisation for the control of automated interacting production stations within a practical time frame. C3 is inspired by an existing cooperative coevolutionary algorithm. Thereby, it embeds an algorithm that optimises subproblems separately. C3 also incorporates a novel constructive heuristic to find good initial solutions and thereby expedite the optimisation. In this work, two industrial optimisation problems, involving interaction production stations, with different sizes are used to evaluate C3. The results illustrate that with C3, it is possible to optimise these problems within a practical time frame and obtain a better solution compared to manual tuning.

  • 5.
    Parsian, Amir
    et al.
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Magnevall, Martin
    AB Sandvik Coromant, SE-811 81 Sandviken, Sweden..
    Beno, Tomas
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Eynian, Mahdi
    University West, Department of Engineering Science, Division of Manufacturing Processes.
    Time Domain Simulation of Chatter Vibrations in Indexable Drills2017In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 89, no 1, 1209-1221 p.Article in journal (Refereed)
    Abstract [en]

    Regenerative chatter vibrations are common in drilling processes. These unwanted vibrations lead to considerable noise levels, damage the quality of the workpiece, and reduce tool life. The aim of this study is to simulate torsional and axial chatter vibrations as they play important roles in dynamic behavior of indexable insert drills with helical chip flutes. While asymmetric indexable drills are not the focal points in most of previous researches, this paper proposes a simulation routine which is adapted for indexable drills. Based on the theory of regenerative chatter vibration, a model is developed to include the asymmetric geometries and loadings that are inherent in the design of many indexable insert drills. Most indexable insert drills have two inserts located at different radial distances, namely central and peripheral inserts. Since the positions of the central and peripheral inserts are different, the displacement and thereby the change in chip thickness differs between the inserts. Additionally, the inserts have different geometries and cutting conditions, e.g., rake angle, coating, and cutting speed, which result in different cutting forces. This paper presents a time-domain simulation of torsional and axial vibrations by considering the differences in dynamics, cutting conditions, and cutting resistance for the central and peripheral inserts on the drill. The time-domain approach is chosen to be able to include nonlinearities in the model arising from the inserts jumping out of cut, multiple delays, backward motions of edges, and variable time delays in the system. The model is used to simulate cutting forces produced by each insert and responses of the system, in the form of displacements, to these forces. It is shown that displacements induced by dynamic torques are larger than those induced by dynamic axial forces. Finally, the vibration of a measurement point is simulated which is favorably comparable to the measurement results.

  • 6.
    Silva, Ana
    et al.
    University West, Department of Engineering Science, Division of Production System.
    De Backer, Jeroen
    University West, Department of Engineering Science, Division of Production System.
    Bolmsjö, Gunnar
    University West, Department of Engineering Science, Division of Production System.
    Temperature measurements during friction stir welding2017In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 88, no 9-12, 2899-2908 p.Article in journal (Refereed)
    Abstract [en]

    The increasing industrial demand for lighter, more complex and multi-material components supports the development of novel joining processes with increased automation and process control. Friction stir welding (FSW) is such a process and has seen a fast development in several industries.This welding technique gives the opportunity of automation and online feedback control, allowing automatic adaptation to environmental and geometrical variations of the component.Weld temperature is related to the weld quality and therefore proposed to be used for feedback control. For this purpose, accurate temperature measurements are required. This paper presents an overview of temperature measurement methods applied to the FSW process. Three methods were evaluated in this work: thermocouples embedded in the tool, thermocouples embedded in the workpiece and the tool-workpiece thermocouple(TWT) method. The results show that TWT is an accurate and fast method suitable for feedback control of FSW.

  • 7.
    Svenman, Edvard
    et al.
    University West, Department of Engineering Science, Research Enviroment Production Technology West. GKN Aerospace.
    Runnemalm, Anna
    University West, Department of Engineering Science, Division of Production System.
    A complex response inductive method for improved gap measurement in laser welding2017In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 88, no 1-4, 175-184 p.Article in journal (Refereed)
    Abstract [en]

    Laser welding needs precise measurement of weldgap position to avoid weld defects. Most often, optical measurement methods are used, but well-aligned narrow gaps canbe difficult to detect. An improved inductive method capable of detecting zero gaps in square butt joints is proposed. The new method uses two eddy current coils, one on each side of the gap, and measures the complex response of the individual coils, i.e. both the inductive and resistive response. By combining the coil responses, both the position and the geometry of the weld gap can be estimated. The method was experimentally investigated by traversing a single coil over an adjustable gap between two plates and combining the measured coil responses into a simulated two-coil probe. The gap was adjusted in both misalignment and gap width up to 0.4 mm. Comparing the results to known settings and positions shows that gap position is measured to within 0.1 mm, if the probe is within a working area of 1 mm from the gap in both position and height. Results from the new method were compared to simulations, from the same experimental data, of a previously reported method where the coils were electrically combined by wiring them together. The previous method can give accurate results but has a much smaller working area and depends on servo actuation to position the probe above the gap. The improved method gives better tolerance to varying misalignment and gap width, which is an advantage over previous inductive methods.

  • 8.
    Svensson, Bo
    et al.
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    Danielsson, Fredrik
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    Lennartson, Bengt
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    An efficient algorithm for press line optimisation2013In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 68, no 5, 1627-1638 p.Article in journal (Refereed)
    Abstract [en]

    Automated manufacturing processes such as automotive tandem press lines include time dependent complex control functions. All motions and critical interactions between moving parts must be synchronised to avoid collisions and reach high production rate. It is even for a skilled operator hard to optimise these processes on-line. Therefore, a hardware-in-the-loop simulation including real industrial control systems and its control code establish an essential tool for optimisation. Additionally, an efficient optimisation algorithm is required to reach a useful simulation-based optimisation method. This paper proposes a new optimisation algorithm starting with the Lipschitzian algorithm DIRECT as global search and then switches over to the Nelder-Mead simplex algorithm for local convergence. During the switch over, the new algorithm determines all local candidates of the set of points evaluated by DIRECT and starts multiple Nelder-Mead local searches in each of these. An optimisation study for an automotive press line shows that the proposed algorithm combines the benefits of the Lipschitzian and the simplex algorithms in an efficient way. The importance of multiple local searches from all local candidates found is also shown in the study. Based on the same number of function evaluations, it is also shown that this algorithm reaches improved press line performances compared to the stochastic differential evolution algorithm.

  • 9.
    Åstrand, Erik
    University West, Department of Engineering Science, Research Environment Production Technology West. Volvo Construction Equipment, Carl Lihnells väg, Braås, Sweden .
    A new innovative toolbox for lean welding of fatigue loaded structures2015In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 81, no 1-4, 635-643 p.Article in journal (Refereed)
    Abstract [en]

    Welding is a key manufacturing technology in the production of heavy steel structures, but it is likewise a weak link in the production chain since fatigue fractures in welds is a common cause of failures. This paper proposes several changes in the process to make the manufacturing more efficient and to improve the fatigue properties. The idea is to adopt the weld quality demands for the purpose of the weld and to connect them to the welding procedures. This approach ensures that the primary focus during welding is at the critical characteristics which add value to the welded structure through an enhanced fatigue life. These fatigue life-critical properties have been found to be related to the local weld geometry in the weld toe and at the weld root. Traditional demands related to the good workmanship of welding can often be neglected, due to its limited effect to the fatigue life. The research presented in this paper has contributed to the development of welding procedures for improved fatigue life properties at the critical points of the weld. Results indicate a considerable potential for enhanced fatigue life of fillet welds. The idea is to replace the standard fillet welds with a new toolbox containing three different welds: (i) welds with optimized penetration, (ii) welds with optimized weld toe, and (iii) welds with a low cost. Right usage of these weld types contributes to an efficient production that offer a long fatigue life. This paper describes a holistic view of the subject and highlights issues with the traditional way of working. The challenge and the novelty in the paper are the connection between the welding process, weld demands, and fatigue life properties. This connection is necessary for the development of welding procedures that can contribute to the fabrication of weight optimized welded structures with a predictable life. © 2015 Springer-Verlag London

  • 10.
    Öberg, Anna Ericson
    et al.
    Volvo Construction EquipmentArvikaSweden.
    Sikström, Fredrik
    University West, Department of Engineering Science, Division of Production System.
    Barriers for industrial implementation of in-process monitoring of weld penetration for quality control2017In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 91, no 5-8, 2427-2434 p.Article in journal (Refereed)
    Abstract [en]

    The research conducted sheds a light on the question why robust in-process monitoring and adaptive control are not fully implemented in the welding industry. In the research project FaRoMonitA, the possibilities to monitor the weld quality during welding have been investigated. Research conducted in this area has merely focused on technical issues investigated in a laboratory environment. To advance the research front and release some barriers related to industrial acceptance, the studies conducted in this paper have been both quantitative and qualitative in form of experiments combined with an interview study. The quality property weld penetration depth was chosen for in-process monitoring to evaluate the industrial relevance and applicability. A guaranteed weld penetration depth is critical for companies producing parts influenced by fatigue. The parts studied were fillet welds produced by gas metal arc welding. The experiments show that there is a relationship between final penetration depth and monitored arc voltage signals and images captured by CMOS vision and infrared cameras during welding. There are still technical issues to be solved to reach a robust solution. The interview study indicates that soft issues, like competence and financial aspects, are just as critical.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf