Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ehnberg, Jimmy S. G.
    et al.
    Chalmers University of Technology, Department of Electric Power Engineering.
    Bollen, Math H.J
    Chalmers University of Technology, Department of Electric Power Engineering.
    Simulation of global solar radiation based on cloud observations2005In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 78, no 2, p. 157-162Article in journal (Refereed)
  • 2.
    Ehnberg, Jimmy S.G.
    University West, Department of Technology, Mathematics and Computer Science, Division for Electrical Engineering and Land Surveying.
    Autonomous power systems based on renewables: On generation reliability and system control2007Doctoral thesis, comprehensive summary (Other academic)
  • 3.
    Ehnberg, Jimmy S.G.
    et al.
    Chalmers University of Technology,Department of Electric Power Engineering.
    Bollen, Math H.J.
    STRI Ab,Ludvika.
    Generation Reliability for Small Isolated Power Systems entirely based on Renewable Sources2004In: Power Engineering Society General Meeting, 2004. IEEE, 2004, p. 2322-2327 Vol 2Conference paper (Refereed)
  • 4.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Design of Low Thermal Conductivity Thermal Barrier Coatings by Finite Element Modelling2011In: Surface Modification Technologies XXIV: SMT24, Dresden, September 7-9, 2010 / [ed] T. S. Sudarshan, Eckhard Beyer, and Lutz-Michael Berger, 2011, p. 353-365Conference paper (Refereed)
    Abstract [en]

    Fundamental understanding of relationships between coating microstructure and thermal conductivity is important to be able to understand the influence of coating defects, such as delaminations and pores, on heat insulation in thermal barrier coatings (TBC). Object Oriented Finite element analysis (OOF) has recently been shown as an effective tool for evaluating thermo-mechanical material behaviour as this method is capable of incorporating the inherent material microstructure as an input to the model. The objective of this work was to evaluate a procedure where this technique is combined with Tbctool, a plasma-sprayed TBC like morphology generator, thus enabling development of low thermal conductivity coatings by simulation. Input parameters for Tbctool were computed from SEM images of sprayed microstructures using the image analysis software, Aphelion. Microstructures for as-sprayed as well as heat treated samples were evaluated. The thermal conductivities of the artificially generated microstructures were determined using OOF. Verification of the modelling procedure was performed by comparing predicted values by OOF with corresponding measured values using the laser flash technique. The results, although tentative in nature, indicate that the proposed simulation approach can be a powerful tool in the development of new low conductivity coatings.

  • 5.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Nylén, Per
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Structure-property Relationships in Thermal Barrier Coatings by Finite Element Modelling2012In: Surface Modification Technologies XXV : proceedings of the Twenty Fifth International Conference on Surface Modification Technologies: SMT25, Trollhättan, June 20-22, 2011 / [ed] T. S. Sudarshan, and P. Nylén, [Chennai]: Valardocs , 2012, p. 175-184Conference paper (Refereed)
    Abstract [en]

    The thermal and mechanical properties of Thermal Barrier Coating systems (TBCs) are strongly influenced by coating defects, such as delaminations and pores, thus making it essential to have a fundamental understanding of microstructure-property relationships in TBCs, to produce a desired coating. Object-Oriented Finite element analysis (OOF) has been shown previously as an effective tool for evaluating thermal and mechanical material behaviour, as this method is capable of incorporating the inherent material microstructure as an input to the model. In this work, OOF was used to predict the thermal conductivity and effective Young’s modulus of TBC topcoats. A Design of Experiments (DoE) was conducted by varying selected spray parameters for spraying Yttria Partially Stabilized Zirconia (YPSZ) topcoat. Characterisation of the coatings included microstructure, porosity and crack content and thermal conductivity measurements. The relationships between microstructural features, thermal conductivity and Young’s modulus are discussed.

  • 6.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Weber, André
    Karlsruhe Institute of Technology, Germany.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Gindrat, Malko
    Oerlikon Metco, Switzerland.
    Electrochemical Performance of Plasma Sprayed Metal Supported Planar Solid Oxide Fuel Cells2016In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 163, no 9, p. F1059-F1065Article in journal (Refereed)
    Abstract [en]

    High production cost is one of the major barriers to widespread commercialization of solid oxide fuel cells (SOFCs). Thermal spraytechniques are a low cost alternative for the production of SOFCs. The objective of this work was to evaluate the electrochemicalperformance of cells produced by plasma spraying. The anode was deposited on a porous metallic support by atmospheric plasmaspraying (APS) whereas the electrolyte was deposited by plasma spray-thin film (PS-TF) technique, which can produce thin anddense coatings at high deposition rates. The cathode was deposited by screen-printing and in-operando sintering. The electrochemicaltests were performed at 650–800◦C. Current-voltage characteristics and impedance spectra were measured and analyzed. The impactof electrolyte composition and layer thickness on the gas tightness of the electrolyte and the area specific resistance of the cell isdiscussed. The results show that the applied thermal spraying techniques are a potential alternative for producing SOFCs.

  • 7.
    Gupta, Mohit Kumar
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Weber, André
    Karlsruhe Institute of Technology, Germany.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Helden, Nadine
    Oerlikon Metco, Germany.
    Development of plasma sprayed Ni/YSZ anodes for metal supported solidoxide fuel cells2017In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 318, p. 178-189Article in journal (Refereed)
    Abstract [en]

    Solid oxide fuel cells (SOFCs) offer a promising technique for producing electricity by clean energy conversionthrough an electrochemical reaction of fuel and air. Plasma spraying could be a potential manufacturing routefor commercial SOFCs, as it provides a distinct advantage especially in case of metal supported cells (MSCs) byallowing rapid processing at relatively low processing temperatures preventing thus the degradation of themetallicsubstrate. The objective of this work was to develop nickel/yttria stabilised zirconia (Ni/YSZ) anodes withhigh porosity and homogeneous phase distribution by atmospheric plasma spraying forMSCs. Various feedstockmaterial approaches were explored in this study, both with single injection aswell as separate injection of differentfeedstock materials , and with and without the use of pore formers to create additional porosity. The advantagesand issues with each material route were investigated and discussed. It was shown that agglomerated Ni/YSZ/polyester feedstock material resulted in the best distribution of Ni and YSZ in the anodemicrostructurewithhomogeneous porosity. Subsequently, the Ni/YSZ/polyester material route with different amounts and size distributionsof polyester was chosen to develop anode symmetrical cells using a commercial zirconia sheet as supportfor electrochemical testing. The Ni/YSZ/polyester anode powder with 10 wt.% standard size polyesterexhibited the best electrochemical performance. The results show that plasma spraying of the agglomeratedNi/YSZ/polyester could be a promising route to achieve high performance and rapid production anodes withoutusing the carcinogenic nickel oxide.

  • 8.
    Isaksson, Charlotta
    et al.
    University West, Department of Social and Behavioural Studies, Division of Social Work and Social Pedagogy. RISE Research Institutes of Sweden, Division Built Environment, Energy and Circular Economy, Box 857, Borås, SE-501 15, Sweden.
    Hiller, Carolina
    RISE Research Institutes of Sweden, Division Built Environment, Energy and Circular Economy, Box 857, Borås, SE-501 15, Sweden.
    Lane, Anna-Lena
    RISE Research Institutes of Sweden, Division Built Environment, Energy and Circular Economy, Box 857, SE-501 15, Borås, Sweden.
    Active, passive, non-existing or conditional?: Social relations shaping energy use at workplaces2019In: Energy Research & Social Science, ISSN 2214-6296, E-ISSN 2214-6326, Vol. 51, p. 148-155Article in journal (Refereed)
    Abstract [en]

    Energy efficiency concerns the entire workplace and a cooperative approach is important for achieving ambitious energy reduction targets. Despite this, many organisations still mainly regard energy efficiency as a technical issue involving just a few specialists. A focus on the social relations and processes that shape work on energy issues is lacking. The aim of this paper is to illuminate and explore social relations between the staff driving energy issues and their co-workers. The analysis presented is based upon two features shaping their mutual engagement for reducing energy use: the communication strategy on energy issues undertaken by the workplace and the support for energy efficiency and conservation among the staff. The study provides insights gained from an interview study done in a Swedish organisation as well as from social science research in the field. The result is a conceptual framework that describes four relationships between the drivers of change and their co-workers. These relationships are characterized as active, passive, non-existing and conditional engagement in energy efficiency and conservation. The framework can be used as a tool for identifying social constraints and possibilities for reducing the use of energy at workplaces as well as in other contexts. © 2019 Elsevier Ltd

  • 9.
    Mandati, Sreenkanth
    et al.
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad, Telangana 500005, India ; Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
    Dey, Suhash R.
    Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
    Joshi, Shrikant V.
    University West, Department of Engineering Science, Research Enviroment Production Technology West.
    Sarada, Bulusu V.
    Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad, Telangana 500005, India.
    Two-dimensional CuIn1−xGaxSe 2 nano-flakes by pulse electrodeposition for photovoltaic applications2019In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 181, p. 396-404Article in journal (Refereed)
    Abstract [en]

    Fabrication of Cu(In,Ga)Se 2 (CIGS) absorber layers containing two-dimensional nano-flake structures using a single stage pulse electrodeposition technique is reported for the first time, wherein CuCl 2 , InCl 3 , GaCl 3 and H 2 SeO 3 are used as precursors in a pH 3 buffer. The method employs tri-sodium citrate as complexing agent. The phenomenon of intrinsic electrochemical dissolution associated with pulse electrodeposition technique is efficiently utilized to obtain CIGS nano-flakes. The presence of tri-sodium citrate and the relaxation time during pulse electrodeposition play crucial role in achieving control over composition and morphology of CIGS films thereby aiding in the formation of nano-flakes. Evolution of nano-flake structures is systematically investigated with the increase in deposition time during pulse electrodeposition. Elemental analysis reveals the stoichiometric composition of nano-flake films while the formation of chalcopyrite phase-pure CIGS is confirmed by XRD and Raman analyses. The bandgap of CIGS nano-flakes is inferred to be about 1.21 eV from Tauc's plot. Mott-Schottky studies unveil the p-type conductivity of the CIGS with a flat-band potential and carrier density values of −0.15 V and 5.2 × 10 16 cm −3 , respectively. Photoelectrochemical characterization of CIGS films affirms their photoactivity and the photoresponse is almost 20 times compared to the traditional planar CIGS films. Nanostructured CIGS films fabricated by low-cost pulse electrodeposition method reduce materials consumption while promising excellent photoresponse and are suitable for photovoltaic and photoelectrochemical applications. © 2019 International Solar Energy Society

  • 10.
    Rohdin, Patrik
    et al.
    Linköpings universitet.
    Johansson, M
    Saab Automobile AB.
    Löfberg, J
    Automatic Control, Linköping University, Sweden.
    Ottosson, Mattias
    University West, Department of Engineering Science, Division of Automation and Computer Engineering.
    Energy efficient process ventilation in paint shops in the car industry: Experiences and an evaluation of a full scale implementation at Saab Automobile in Sweden.2012In: Ventilation 2012, 2012, p. 1-6Conference paper (Refereed)
    Abstract [en]

    Support processes in industrial energy systems, such as heating, ventilation and cooling systems, are important processes in industrial premises as they are related to energy cost, product quality as well as the indoor environment.

    In the vehicle production process the paint shop is the most energy intensive part, and about 75% of the energy is used in the ovens and spray booths. The spray booth line, which includes paint application and the oven, uses large quantities of air in order to keep the air quality in an optimal range to achieve the desired paint quality. The approach used in paint shops has up to now been to keep as much of steady state conditions as possible to avoid paint defects due to disturbances in the balance. This means that these high air flows are used also at low and non production hours. There is thus a large potential to increase energy efficiency by controlling the air flow and heating without losing the critical balances. This paper will present an initial post-implementation evaluation of the energy efficiency potential and experiences after running this type of system. CFD has been used to investigate the control strategy.

  • 11.
    Uczak de Goes, Wellington
    et al.
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Somhorst, Joop
    Volvo Car Corporation, Göteborg, Sweden.
    Markocsan, Nicolaie
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Gupta, Mohit Kumar
    University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing.
    Illkova, Kseniya
    Institute of Plasma Physics, Prague, Czech Republic.
    Suspension Plasma-Sprayed Thermal Barrier Coatings for Light-Duty Diesel Engines2019In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 28, no 7, p. 1674-1687Article in journal (Refereed)
    Abstract [en]

    Demands for improved fuel efficiency and reduced CO2 emissions of diesel engines have been the driving force for car industry in the past decades. One way to achieve this would be by using thermal spraying to apply a thermal insulation layer on parts of the engine’s combustion chamber. A candidate thermal spray process to give coatings with appropriate properties is suspension plasma spray (SPS). SPS, which uses a liquid feedstock for the deposition of finely structured columnar ceramic coatings, was investigated in this work for application in light-duty diesel engines. In this work, different spray processes and materials were explored to achieve coatings with optimized microstructure on the head of aluminum pistons used in diesel engine cars. The functional properties of the coatings were evaluated in single-cylinder engine experiments. The influence of thermo-physical properties of the coatings on their functional properties has been discussed. The influence of different spray processes on coating formation on the complex piston head profiles has been also discussed. The results show that SPS can be a promising technique for producing coatings on parts of the combustion chamber, which can possibly lead to higher engine efficiency in light-duty diesel engines.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf