Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Broberg, Patrik
    et al.
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Runnemalm, Anna
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Sjödahl, Mikael
    University West, Department of Engineering Science, Division of Mechanical Engineering.
    Improved Corner Detection by Ultrasonic Testing using Phase Analysis2013In: Ultrasonics, ISSN 0041-624X, E-ISSN 1874-9968, Vol. 53, no 2, p. 630-634Article in journal (Refereed)
    Abstract [en]

    In ultrasonic testing, corners are used for sensitivity calibration in the form of notches, for measuring the sound velocity in the material, and as known reference points during testing. A 90° corner will always reflect incoming waves in the opposite direction due to a double reflection and therefore give a strong echo. This article presents a method for separating the echo from a corner from other echoes and more accurately find the position of the corner. The method is based on analysing the phase of the reflected signal. The proposed method was tested on a steel calibration block and the width of the indication was reduced by up to 50% compared to the amplitude signal. This results in a more accurate positioning of the corner. Using the phase instead of the amplitude will also improve the reliability, since reflections other than from corners will disappear.

  • 2.
    Broberg, Patrik
    et al.
    University West, Department of Engineering Science, Division of Process and Product Development.
    Sjödahl, Mikael
    University West, Department of Engineering Science, Division of Process and Product Development.
    Runnemalm, Anna
    University West, Department of Engineering Science, Division of Process and Product Development.
    Improved Image Quality in Phased Array Ultrasound by Deconvolution2012In: Proceedings18th World Conference on Non-Destructive Testing: 16 - 20 April 2012, Durban, South Africa, South African Institute for Non-Destructive Testing (SAINT) , 2012, p. 1-5Conference paper (Refereed)
    Abstract [en]

    High contrast and resolution in phased array ultrasonic images are of importance for accurate evaluation. The spread of the ultrasonic beam is one cause of the images being unsharp. One technique for reducing the influence of the beam spread, and thereby improving the image quality, is by deconvolving the data with the point spread function of the ultrasonic beam. By assuming that the material is homogeneous, the point spread function of the beam can be simulated using diffraction theory. Results from a deconvolution performed on data acquired from a side drilled hole in a steel calibration block are presented. It is shown that a significant improvement in sharpness and contrast can be achieved.

  • 3.
    Gupta, Siddhartha
    et al.
    VIT Vellore,School Of Electrical Engineering (SELECT),Vellore,India.
    Sinha, Neha
    VIT Vellore,School Of Electrical Engineering (SELECT),Vellore,India.
    Ramasamy, Sudha
    University West, Department of Engineering Science, Division of Production Systems.
    Babu, Challa
    VIT Vellore,School Of Electrical Engineering (SELECT),Vellore,India.
    Breast Cancer Detection Using Image Processing Techniques2019In: 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Institute of Electrical and Electronics Engineers Inc. , 2019, Vol. 1Conference paper (Refereed)
    Abstract [en]

    Cancer is the uncontrolled multiplication of group of cells in a particular location of the body and is the second largest disease leading to the death of women in the world. The disease can be cured if it is detected in early stages. A lot of research has been done to find out the tumor correctly but a 100% accurate method has not been found. Research on breast cancer detection using digital image processing is not new but many new approaches in this field is being considered to accurately predict the tumor region. The present approach is to detect the tumor region visually as well as to figure out in which region the tumor is mostly concentrated. This work majorly focuses on finding out the best algorithm/s to detect the tumor present in the breast. In the proposed work, a variety of algorithms has been applied but the best one suited for cancer detection is the combination of K Means, Closing, Dilation and Canny Edge Detection algorithm. © 2019 IEEE.

  • 4.
    Gustafsson, Jenny
    University West, Department of Engineering Science, Division of Industrial Engineering and Management, Electrical- and Mechanical Engineering.
    Påverkan på leveranssäkerheten och elavbrottstiden vid användning av fjärrutrustning2022Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Every year the electricity network companies in Sweden reports to Energimarknadsinspektionen (EI) about how long power outages they have had in their networks as well as other data needed to ensure the network quality. SAIDI, SAIFI and CAIDI are three different reliability indicators that depicts the quality of the network as they give numbers on how many and how long outages that have occurred in the network.

    To achieve as low values as possible on these indicators the network must be provided with equipment such as fault indicators and remote-control equipment to quickly find and fix faults in the network. To find out how much more efficient the fault clearing gets with fault indicators and remote control, two different studies have been performed. For the first study a fictitious scenario has been produced to investigate how operations management engineers handle the same fault and which steps that are made based on different conditions regarding fault detectors and remote control. For the other study, outages longer than three minutes in two of Gothenburg energy’s receiving stations during 2018-2020 have been analysed to investigate if the duration could have been shorter if the network would have had more stations with fault indicators and remote control. To illustrate the duration of the outage, the reliability indicator CAIDI will be used as it illustrates the average duration of the outage forevery customer.

    The result of the investigation shows that the duration of the outage for the analysed faults would have been shorter for most of the customers with more remote control and fault indicators. Although it is important to point out that not all faults in the network can be solved quicker with remote control and fault indicators since some long interruption times is a result of other factors such as equipment that doesn’t work properly.

    Download full text (pdf)
    fulltext
  • 5.
    Ryberg, Anders
    et al.
    University West, Department of Technology, Mathematics and Computer Science, Division for Electrical Engineering and Land Surveying.
    Christiansson, Anna-Karin
    University West, Department of Technology, Mathematics and Computer Science, Division for Electrical Engineering and Land Surveying.
    Eriksson, Kenneth
    University West, Department of Technology, Mathematics and Computer Science, Division for Mathematics and Sciences.
    Lennartson, Bengt
    Chalmers University of Technology.
    A new Camera Model for Higher Accuracy Pose Calculations2006In: Industrial Electronics, 2006 IEEE International Symposium on Industrial Electronics, 2006, p. 2798-2802Conference paper (Refereed)
    Abstract [en]

    A position and orientation (pose) measurement system is being developed. The system, called PosEye, is based on a camera and by using the information in the image, the pose of the camera taking the image can be calculated. The system is aimed to be placed on an industrial robot for welding, but it is flexible and can also be used in many other applications. The accuracy has been measured, and it is concluded that the accuracy needs to be improved for welding applications. To make the pose measurement, reference points, that can be recognized in the image, are distributed in the working area. The positions of the reference points and the parameters in a camera model are initially computed automatically from sample images from a number of directions to the reference points. After this calibration, the pose can be calculated at each sample image. For high accuracy there is a need to have a camera model that takes into account a number of distortion effects, which are further developed in this paper. The new model is used to express an optimization cost function that can be used for both the pose calculation, and the extensive calibration, that determines camera parameters in the camera model and the positions of the reference points

  • 6.
    Ryberg, Anders
    et al.
    University West, Department of Engineering Science.
    Christiansson, Anna-Karin
    University West, Department of Engineering Science.
    Lennartson, Bengt
    University West, Department of Engineering Science, Division of Production Systems.
    Eriksson, Kenneth
    University West, Department of Engineering Science, Division of Mathematics, Computer and Surveying Engineering.
    Camera Modelling and Calibration - with Applications2008In: Computer Vision / [ed] Zhihui, X., Vienna: I-Tech Education and Publishing , 2008, p. 303-332Chapter in book (Other academic)
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf