Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of HFMI treatment procedure on weld toe geometry and fatigue properties of high strength steel welds
University West, Department of Engineering Science, Division of Manufacturing Processes. (PTW)ORCID iD: 0000-0003-4978-390X
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0003-2560-0531
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0001-8822-2705
University West, Department of Engineering Science, Division of Welding Technology. (PTW)ORCID iD: 0000-0002-0234-3168
2016 (English)In: Procedia Structural Integrity, 2016, Vol. 2, 3483-3490 p.Conference paper, (Refereed)
Abstract [en]

The effects of high frequency mechanical impact (HFMI) treatment procedure on the weld toe geometry and fatigue strength in 1300 MPa yield strength steel welds were investigated. In this regard first the effect of three or six run treatments on the weld toe geometry was evaluated. The fatigue strength and weld toe geometry of as-welded and HFMI treated samples was then compared. Fatigue testing was done under fully reversed, constant amplitude bending load. When increasing the number of treatment runs from three to six, the weld toe radius and width of treatment remained almost constant. However, a slightly smaller depth of treatment in the base metal and a somewhat larger depth of treatment in the weld metal was observed. HFMI treatment increased the fatigue strength by 26%. The treatment did not increase the weld toe radius significantly, but resulted in a more uniform weld toe geometry along the weld. A depth of treatment in the base metal in the range of 0.15-0.19 mm and a width of treatment in the range of 2.5-3 mm, were achieved. It is concluded that the three run treatment would be a more economical option than the six run treatment providing a similar or even more favourable geometry modification.

Place, publisher, year, edition, pages
2016. Vol. 2, 3483-3490 p.
Keyword [en]
Fatigue strength, high frequency mechanical impact treatment, high strength steel, weld toe
National Category
Mechanical Engineering
Research subject
ENGINEERING, Manufacturing and materials engineering
Identifiers
URN: urn:nbn:se:hv:diva-9598DOI: 10.1016/j.prostr.2016.06.434OAI: oai:DiVA.org:hv-9598DiVA: diva2:949788
Conference
21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy
Available from: 2016-07-24 Created: 2016-07-24 Last updated: 2016-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Harati, EbrahimSvensson, Lars-ErikKarlsson, LeifHurtig, Kjell
By organisation
Division of Manufacturing ProcessesDivision of Welding Technology
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 117 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf