The paper proposes a method for finding the accurate position of narrow gaps, intended for seam tracking applications. Laser beam welding of butt joints, with narrow gap and weld width, demand very accurate positioning to avoid serious and difficult to detect lack of fusion defects. Existing optical and mechanical gap trackers have problems with narrow gaps and surface finish. Eddy current probes can detect narrow gaps, but the accuracy is affected by mismatch in height above the surface on either side of the gap. In this paper a non-contact eddy-current method, suitable for robotic seam tracking, is proposed. The method is based on the resistive and inductive response of two absolute eddy current coils on either side of the gap to calculate a position compensated for height variations. Additionally, the method may be used to estimate the values of height and gap width, which is useful for weld parameter optimization. To investigate the response to variations in height, the method is tested on non-magnetic metals by scanning one commercially available eddy current probe across an adjustable gap and calculating the expected response for a two-probe configuration. Results for gap position are promising, while mismatch and gap width results need further investigation.