We introduce fuzzy groupoid graded rings and, as a par-ticular case, fuzzy crossed product algebras. We show that there is abijection between the set of fuzzy graded is omorphism equivalence classes of fuzzy crossed product algebras and the associated second cohomology group. This generalizes a classical result for crossed product algebras to thefuzzy situation. Thereby, we quantize the difference of richness between the fuzzy and the crisp case. We give several examples showing that in the fuzzy case the associated second cohomology group is much ner than in the classical situation. In particular, we show that the cohomology group may by in nite in the fuzzy case even though it is trivial in the crisp case.