Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of Chip Morphology in Oblique Nose Turning employing High Speed Videography and Computed Tomography Technique
University West, Department of Engineering Science, Research Enviroment Production Technology West. (PTW)
University West, Department of Engineering Science, Division of Manufacturing Processes. (PTW)
2016 (English)Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2016.
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-8669OAI: oai:DiVA.org:hv-8669DiVA: diva2:871451
Conference
6th International Conference on Competitive manufacturing – COMA ‘16”in Stellenbosch, South Africa 2016
Note

Ingår i licentiatuppsats

Available from: 2015-11-14 Created: 2015-11-14 Last updated: 2016-02-09Bibliographically approved
In thesis
1. Characterization & modeling of chip flow angle & morphology in 2D & 3D turning process
Open this publication in new window or tab >>Characterization & modeling of chip flow angle & morphology in 2D & 3D turning process
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Within manufacturing of metallic components, machining plays an important role and is of vital significance to ensure process reliability. From a cutting tool design perspective,  tool macro geometry  design  based on physics based  numerical modelling  is highly needed  that can predict chip morphology.  The chip morphology describes the chip shape geometry and the chip curl geometry. The prediction of chip flow and chip shape is vital in predicting chip breakage, ensuring good chip evacuation and lower surface roughness.  To this end, a platform where such a  numerical model’s chip morphology prediction  can be compared with experimental investigation is needed and is the focus of this work. The studied cutting processes are orthogonal cutting process and nose turning process. Numerical models that simulate the chip formation process are employed to predict the chip morphology and are accompanied by machining experiments. Computed tomography is used  to scan the chips obtained from machining experiments and its ability to capture the variation in  chip morphology  is evaluated.  For nose turning process,  chip  curl parameters during the cutting process are to be calculated. Kharkevich model is utilized in this regard to calculate the  ‘chip in process’ chip curl parameters. High speed videography is used to measure the chip side flow angle during the cutting process experiments and are directly compared to physics based model predictions. The results show that the methodology developed provides  the framework where advances in numerical models can be evaluated reliably from a chip morphology prediction capability view point for nose turning process. The numerical modeling results show that the chip morphology variation for varying cutting conditions is predicted qualitatively. The results of quantitative evaluation of chip morphology prediction shows that the error in prediction is too large to be used for predictive modelling purposes.

Place, publisher, year, edition, pages
Trollhättan: University West, 2015. 67 p.
Series
Licentiate Thesis: University West, 5
Keyword
Chip curl, Chip flow, Computed tomography, Chip formation, Machining
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-8671 (URN)978-91-87531-20-0 (ISBN)978-91-87531-21-7 (ISBN)
Presentation
2016-03-31, 11:00 (English)
Supervisors
Available from: 2016-04-01 Created: 2015-11-14 Last updated: 2016-04-01Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Devotta, AshwinBeno, Tomas
By organisation
Research Enviroment Production Technology WestDivision of Manufacturing Processes
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

Total: 192 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf