Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of microstructure and phase constitution on mechanical properties of Ti1-xAlxN coatings
Show others and affiliations
2014 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 313, p. 936-946Article in journal (Refereed) Published
Abstract [en]

Monolithic TiAlN coatings with varying Al content in the range 0-65 at.% were deposited by cathodic arc evaporation. The variation in mechanical properties was studied by nanoindentation and scratch testing, and correlated with the phase constitution, grain size and residual stress. The hardness was found to be nearly stable up to Al content of 53% followed by a large drop at 65%. Depending on the stoichiometry, phase constitution and microstructure of the Ti1-xAlxN coatings, the mechanical property measurements were observed to reveal distinct trends at particular Al contents-ranging from a large scatter to clustering of data around specific values. Focused Ion Beam milling and Transmission Electron Microscopy studies showed a gradual change in microstructure, from large columnar grains in TiN to finer columns at intermediate Al content and near equiaxed, ultrafine grains with a nanocomposite structure in case of Ti0.35Al0.65N. Scratch studies revealed the deformation modes to vary with Al content, with the ductile failure modes at low Al content giving way to brittle failure at the highest Al content. Toughness studies showed a gradual increase in toughness with Al%, with the maximum seen at 53% and a moderate drop seen at 65%. The toughness shows a close dependence on the mechanical properties, phase constitution and microstructure. The study outlines the role of Al content on the microstructure of PVD TiAlN coatings and highlights the advantage of a cubic, nanocomposite structure for enhancing the toughness of these coatings. © 2014 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
Elsevier , 2014. Vol. 313, p. 936-946
Keywords [en]
Cathodic arc deposition, Mechanical properties, Nanocomposite, Stoichiometry, TiAlN, Toughness, Aluminum, Coatings, Drops, Microstructure, Nanocomposites, Transmission electron microscopy, Cathodic arc evaporation, Deformation modes, Focused ion beam milling, Mechanical property measurements, Nano-composite structure, Phase constitution, Aluminum coatings
Identifiers
URN: urn:nbn:se:hv:diva-8484OAI: oai:DiVA.org:hv-8484DiVA, id: diva2:859837
Available from: 2015-10-08 Created: 2015-10-08 Last updated: 2020-11-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Joshi, S. V.

Search in DiVA

By author/editor
Joshi, S. V.
In the same journal
Applied Surface Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf