Conventional yttria stabilized zirconia (YSZ) are widely used in the gas turbine to protect the substrate material from high temperature. But the common YSZ top coatings have limitations at higher temperature (above 1200
℃) due to significant phase transformation and intensified sintering effect. Among the list of pyrochlores, gadolinium zirconate offer very attractive properties like low thermal conductivity, high thermal expansion coefficient and CMAS resistance. However, a lower fracture toughness than YSZ and tendency to react with alumina (thermal grown oxide) can lead to lower lifetime. Therefore, multi-layered thermal barrier coating approach was attempted and compared with single layer system. Single layer (YSZ) was processed by suspension plasma spraying (SPS). Double layer coating system comprising of YSZ as the bottom ceramic layer and gadolinium zir-conate as the top ceramic coat was processed by SPS. Also, a triple layer coating system with denser gadolinium zirconate on top of double layer system, was sprayed. Denser gado-linium zirchonate acts as the sealing layer and arrest the CMAS penetration. Isothermal oxidation performance of the sprayed coating systems including bare substrate and sub-strate with bond coat were investigated for a time period of 10hr, 50hr and 100hr at 1150℃ in air environment. Weight gain was observed in all the systems investigated. Microstruc-tural analysis was carried out using optical microscopy, SEM/EDS. Phase analysis was done using X-ray diffraction (XRD). Porosity measurement was made by water impregna-tion method. It was observed that multi-layered thermal barrier coating systems of YSZ/GZ and YSZ/GZ/GZ(dense) showed lower weight gain and TGO thickness than the single layer YSZ for all exposure time (10hr, 50hr & 100hr). The triple layer system had lower weight gain and TGO thickness compared to double layer system due to lower po-rosity content. Also, from the porosity measurement data, it could be seen that sintering effect is more dominant at 10 hr. of oxidation for all the coatings systems.