The spherical harmonic expressions of the horizontal sub-crustal stress components induced by the mantle convection are convergent only to low degrees. In this paper, we use the method of stress (S) function with numerical differentiation and present a formula for determining the degree of convergence from the mean Moho depth. We found that for the global mean Moho depth, 23 km, this convergence degree is 622 and for Iran, 35 km, it is 372. Also, three methods are developed and applied for computing the sub-crustal stress, (1) direct integration with a spectral kernel limited up to the degree of convergence, (2) integral inversion with a kernel having closed-form formula without any frequency limit, and (3) solving an integral equation with limited spectral kernel to the convergence degree. The second method has no divergence problem and its kernel function is well behaving so that the system of equations from which the S function is determined is stable, and no regularisation is needed to solve it. It should be noted that for using this method the resolution of the recovery should be higher than 0.5° × 0.5°, otherwise the recovered S function and correspondingly the stress components will have smaller magnitude than those derived from the other two methods. Our numerical studies for stress recovery in Iran and its surrounding areas show that the methods, which use the limited spectral kernels to the convergence degree, deliver consistent results to that of the spherical harmonic expansion.