Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings
University West, Department of Engineering Science, Division of Manufacturing Processes. (PTW)ORCID iD: 0000-0003-1897-0171
University West, Department of Engineering Science, Division of Manufacturing Processes. (PTW)ORCID iD: 0000-0003-0209-1332
University West, Department of Engineering Science, Division of Manufacturing Processes. (PTW)ORCID iD: 0000-0002-9578-4076
University West, Department of Engineering Science, Research Environment Production Technology West. (PTW)ORCID iD: 0000-0001-7787-5444
Show others and affiliations
2015 (English)In: Surface and Coatings Technology, ISSN 0257-8972, Vol. 268, 70-76 p.Article in journal (Refereed) Published
Abstract [en]

Suspension Thermal Spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings. This technique enables the production of much different performance thermal barrier coatings than conventional thermal spraying which uses solid powder as a feedstock material. In this work a comparative study is performed on four different types of thermal barrier coatings sprayed with two different thermal spay processes, suspension high velocity oxy-fuel spraying (SHVOF) and suspension plasma spraying (SPS) using two different water-based suspensions. Tests carried out include microstructural analysis with SEM, porosity analysis using weight difference by water infiltration, thermal conductivity measurements using laser flash analysis and lifetime assessment using thermo-cyclic fatigue tests. The results showed that SPS coatings were much porous and hence showed lower thermal conductivity than SHVOF coatings produced with the same suspension. From the thermo-cycling tests it was observed that the SPS coatings showed a higher lifetime than the SHVOF ones.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 268, 70-76 p.
Keyword [en]
Suspension plasma spraying, Thermal barrier coatings, Suspension high velocity oxy-fuel spraying, Vertical cracks, Thermal conductivity
National Category
Manufacturing, Surface and Joining Technology
Research subject
ENGINEERING, Manufacturing and materials engineering; Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-7264DOI: 10.1016/j.surfcoat.2014.11.054ISI: 000353735300012Scopus ID: 2-s2.0-84926216396OAI: oai:DiVA.org:hv-7264DiVA: diva2:779223
Conference
6th Rencontres Internationales de la Projection Thermique
Available from: 2015-01-12 Created: 2015-01-09 Last updated: 2016-02-11Bibliographically approved
In thesis
1. Microstructure and Thermal Conductivity of Liquid Feedstock Plasma Sprayed Thermal Barrier Coatings
Open this publication in new window or tab >>Microstructure and Thermal Conductivity of Liquid Feedstock Plasma Sprayed Thermal Barrier Coatings
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Thermal barrier coating (TBC) systems are widely used on gas turbine components to provide thermal insulation and oxidation protection. TBCs, incombination with advanced cooling, can enable the gas turbine to operate at significantly higher temperatures even above the melting temperature of the metallic materials. There is a permanent need mainly of environmental reasons to increase the combustion turbine temperature, hence new TBC solutions are needed.By using a liquid feedstock in thermal spraying, new types of TBCs can be produced. Suspension plasma/flame or solution precursor plasma spraying are examples of techniques that can be utilized for liquid feedstock thermal spraying.This approach of using suspension and solution feedstock, which is an alternative to the conventional solid powder feed stock spraying, is gaining increasing research interest, since it has been shown to be capable of producing coatings with superior coating performance.The objective of this research work was to explore relationships between process parameters, coating microstructure, thermal diffusivity and thermal conductivity in liquid feedstock thermal sprayed TBCs. A further aim was to utilize this knowledge to produce a TBC with lower thermal diffusivity and lower thermal conductivity compared to state-of-the-art in industry today, i.e. solid feed stock plasma spraying. Different spraying techniques, suspension high velocity oxy fuel,solution precursor plasma and suspension plasma spraying (with axial and radialfeeding) were explored and compared with solid feedstock plasma spraying.A variety of microstructures, such as highly porous, vertically cracked and columnar, were obtained. It was shown that there are strong relationships between the microstructures and the thermal properties of the coatings.Specifically axial suspension plasma spraying was shown as a very promising technique to produce various microstructures as well as low thermal diffusivity and low thermal conductivity coatings.

Place, publisher, year, edition, pages
Trollhättan: University West, 2016. 58 p.
Series
Licentiate Thesis: University West, 9
Keyword
Microstructure, Thermal Barrier Coating; Axial Injection; Suspension Plasma Spraying; Suspension High Velocity Oxy Fuel Spraying; Solution Precursor Plasma Spraying; Porosity; Thermal Diffusivity; Thermal Conductivity
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-9061 (URN)978-91-87531-18-7 (ISBN)978-91-87531-19-4 (ISBN)
Opponent
Supervisors
Available from: 2016-02-11 Created: 2016-02-10 Last updated: 2016-02-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Ganvir, AshishCurry, NicholasMarkocsan, NicolaieNylén, Per

Search in DiVA

By author/editor
Ganvir, AshishCurry, NicholasMarkocsan, NicolaieNylén, Per
By organisation
Division of Manufacturing ProcessesResearch Environment Production Technology West
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 375 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf