Open this publication in new window or tab >>2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
The average size of hot-work tools has gradually increased over the past years.This affects the effective temperature cycle tools experience during hardening,as large dimensions prevent uniform and rapid cooling, and thereby the resulting microstructures and properties. In order to avoid the formation of coarse structures or cracking during heat treatment it has become common practise to lower the austenitising temperature below that recommended by the steel manufacturer.In this work, therefore, the effects of austenitising at temperatures lower thancommonly recommended are investigated. Three 5% Cr hot-work tool steelsalloyed with Mo and V were heat treated, resulting microstructures andtempering carbides were studied and transformation characteristics determined for different austenitising temperatures and different cooling rates. The temperatures and cooling rates have been chosen to be representative for heat treatments of different sizes of tools. Bainite rather than martensite formed during slow cooling regardless of austenitising temperature. A lowered austenitising temperature produced largeramounts of both bainite and retained austenite while a higher caused graingrowth. Carbon partitioning during the bainitic transformation resulted in anincrease of the carbon content in the retained austenite of at least 0.3 wt.%. The austenitising temperature influences also the type and amount of tempering carbides that precipitate, which affects the properties of the steel. Higher austenitising temperatures favour the precipitation of MC carbides during tempering. The Mo rich M2C type carbides were proven to be more prone to coarsening during service at 560°C-600°C, while V rich MC carbides preserve their fine distribution. A best practice heat treatment needs to balance the increase of grain size with increasing austenitising temperatures, with the possibility to form more tempering carbides. Higher austenitising temperatures also give less retained austenite, which can affect dimensional stability and toughness negatively after tempering
Place, publisher, year, edition, pages
Trollhättan: University West, 2015. p. 85
Series
Licentiate Thesis: University West ; 4
Keywords
Tool steel, Heat Treatment, Austenitising Temperature, Large Tools, Tempering Carbides, Bainitic Microstructures
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology; ENGINEERING, Manufacturing and materials engineering
Identifiers
urn:nbn:se:hv:diva-8614 (URN)978-91-87531-16-3 (ISBN)978-91-87531-15-6 (ISBN)
Opponent
Supervisors
2015-11-112015-11-022019-12-03Bibliographically approved