Failure in Atmospheric Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) is associated with the thermomechanical stresses developing due to the Thermally Grown Oxide (TGO) layer growth and thermal expansion mismatch during thermal cycling. The interface roughness has been shown to play a major role in the development of these induced stresses and lifetime of TBCs. Modeling has been shown as an effective tool to understand the effect of interface roughness on induced stresses. In previous work done by the research group, it was observed that APS bondcoats performed better than the bondcoats sprayed with High Velocity OxyFuel (HVOF) process which is contrary to the present literature data. The objective of this work was to understand this observed difference in life-time with the help of finite element modeling by using real surface topographies. Different TGO layer thicknesses were evaluated. The modeling results were also compared with existing theories established on simplified sinusoidal profiles published in earlier works. It was shown that modeling can be used as an effective tool to understand the stress behavior in TBCs with different roughness profiles.