During the last decades, a substantial amount of research and practical work has been conducted on non-destructive testing of materials using thermography. The performed studies elucidate the potential of various types of thermal non-destructive testing (TNDT) for different materials and applications, including various types of defects. This paper presents a method for detecting in-depth defects in metallic materials and a simulation model for the heat transfer in the material. Experiments are performed on a test specimen with artificial defects (flat-bottom holes). The detection method exploits spatiotemporal analysis in order to find deviations from a model of normality, and shows novel results. Thermal modelling is performed in order to have a base-line simulation model enable us to (a) investigate affecting parameters without repeating the experiments and (b) generalize the results and extend their validity to other cases. Results show that there is an acceptable compliance between simulated and measured thermal data.