We introduce partially defined dynamical systems defined on a topological space. To each such system we associate a functor s from a category G to Top^op and show that it defines what we call a skew category algebra AxG. We study the connection between topological freeness of s and, on the one hand, ideal properties of AxG and, on the other hand, maximal commutativity of A in AxG. In particular, we show that if G is a groupoid and for each e in ob(G) the group of all morphisms from e to e is countable and the topological space s(e) is Tychonoff and Baire, then the following assertions are equivalent: (i) s is topologically free; (ii) A has the ideal intersection property, that is if I is a nonzero ideal of AxG, then I \cap A is not equal to zero; (iii) the ring A is a maximal abelian complex subalgebra of AxG. Thereby, we generalize a result by Svensson, Silvestrov and de Jeu from the additive group of integers to a large class of groupoids.