Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cohomology and Self-dual Normal Bases for Infinite Galois Field Extensions
University West, Department of Technology.ORCID iD: 0000-0001-6594-7041
2002 (English)In: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 256, 531-541 p.Article in journal (Refereed) Published
Abstract [en]

We generalize an injectivity result obtained by Bayer-Fluckiger and Lenstra concerning pointed cohomology sets, defined by norm-one groups of finite-dimensional algebras with involution over fields k of characteristic different from 2, to the case of inverse limits of finite-dimensional k-algebras with involution. We use this generalization to obtain a result about self-dual normal bases for infinite Galois field extensions.

Place, publisher, year, edition, pages
2002. Vol. 256, 531-541 p.
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:hv:diva-2346DOI: 10.1016/S0021-8693(02)00046-7OAI: oai:DiVA.org:hv-2346DiVA: diva2:311182
Available from: 2010-04-20 Created: 2010-04-20 Last updated: 2015-06-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lundström, Patrik
By organisation
Department of Technology
In the same journal
Journal of Algebra
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 96 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf