Computational fluid dynamics models with free surface tracking intended to simulate the melt pool produced by an electric arc usually model the electromagnetic force ignoring the deformation of the free surface. However, with an arc heat source, the electromagnetic force is known to be among the leading-order forces, especially at high currents. In addition, the free surface can undergo significant deformations, especially in the presence of metal transfer. In the present study, a generalization of the electromagnetic force model that accounts for the deformation of the free surface is therefore proposed. Test cases with a pulsed gas-metal arc that transfers one metal drop per pulse were investigated experimentally at three different travel speeds to provide validation data. The cases were simulated with both the proposed and the earlier model to assess the influence of the new developments. The results showed that, in the regions where both models determine the force, the discrepancy between the models’ results can reach up to an order of magnitude. Especially, the earlier model overestimates the electromagnetic force deep into the melt pool. On the other hand, it neglects it in the liquid metal that is located at an elevation above the original upper surface of the workpiece, while the proposed model showed that in this area the intensity of the electromagnetic force is the largest. These significant discrepancies result in non-negligible differences in the predicted melt pool thermal flow and geometry. Especially, the propose dextended model provides an improved prediction of the fingertip-shaped fusion boundary.
CC BY 4.0