Modified PH 13-8Mo alloy exhibits a good combination of corrosion resistance and mechanical properties for demanding applications in aerospace, petrochemical, and tooling industries. Additive manufacturing, specifically the laser metal deposition process with powder as feedstock (LMDp), has the potential to be utilized in these industries. However, very limited knowledge on the LMDp of this alloy currently exists. The aim of this work was, therefore, to deposit a multi-track single layer of modified PH 13-8Mo alloy as a first step towards 3D geometries, and to analyze the resulting microstructure by using Optical Microscopy, Scanning Electron Microscopy, X-Ray Diffraction, Electron Backscatter Diffraction, and micro-hardness. It was found that the multitrack single layer was free from major defects. The microstructure was heterogeneous, and it consisted of a martensitic matrix and small amounts of δ ferrite, austenite, and AlN. The results of this research will be used to tailor the microstructure and properties of future 3D additively manufactured components.
The Swedish Knowledge Foundation (KK-stiftelsen, Stiftelsen för kunskaps- ochkompetensutveckling) funded this research via DEDICATE: Directed Energy Deposition for Industrial Competitiveness in Additive Manufacturing Technologies project (Dnr.20210094).