Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nondestructive evaluation of additively manufactured components
University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. (KAMPT)ORCID iD: 0000-0001-6738-9936
University West, Department of Engineering Science, Division of Subtractive and Additive Manufacturing. (KAMPT)ORCID iD: 0000-0002-4274-1144
University West, Trollhättan (SWE).
2023 (English)In: Additive Manufacturing of High-Performance metallic Materials / [ed] Pederson, Robert, Andersson, Joel & Joshi, Shrikant V., Elsevier , 2023, 1., p. 639-675Chapter in book (Refereed)
Abstract [en]

Lightweight and optimized designs through modern metal additivemanufacturing (AM) require reliable manufacturing processes and put highdemands on quality assessment and control. This part addressesnondestructive testing (NDT) technologies and their industrial AMapplications with a focus on process monitoring, control, and development.Data derived from NDT can be used for process monitoring (as sensors), inprocess nondestructive evaluation (NDE), or postprocess NDE. This chapteraims to define and point out the distinction between these differentframeworks. The methods and techniques addressed include (a) Defectsintroduced during manufacturing, welding (pores, lack of fusion, etc.) withthe NDT perspective in focus; (b) in-service inspection (ISI) andmanufacturing control (in-process and postprocess NDE); (c) NDT methodsand associated physics; (d) standards related to NDT for AM, includingprobability of detection (POD); and (e) mathematical modeling andapplication of NDE simulations. 

Place, publisher, year, edition, pages
Elsevier , 2023, 1.. p. 639-675
Keywords [en]
Governing standards; Nondestructive evaluation (NDE); Nondestructive techniques (NDT); Probability of detection (POD); Quantitative NDE (QNDE)
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
URN: urn:nbn:se:hv:diva-21081ISBN: 9780323918855 (print)ISBN: 9780323913829 (electronic)OAI: oai:DiVA.org:hv-21081DiVA, id: diva2:1819532
Available from: 2023-12-14 Created: 2023-12-14 Last updated: 2024-03-27Bibliographically approved
In thesis
1. Ultrasonic testing of components produced with additive manufacturing: Towards improved detection and classification of defects
Open this publication in new window or tab >>Ultrasonic testing of components produced with additive manufacturing: Towards improved detection and classification of defects
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Alternative title[sv]
Ultraljudsprovning av komponenter tillverkade med additiva metoder : Mot förbättrad detektering och klassificering av defekter
Abstract [en]

The focus in this work is on the use of ultrasonic testing as a method for inspecting components manufactured through additive manufacturing (AM) processes. The research is rooted in the need for effective non-destructive testingtechniques that can adapt to the unique challenges posed by AM-produced materials, including complex defect geometries and surface conditions.

Ultrasonic testing is a versatile form of non-destructive testing, offering theability to detect internal flaws, such as voids, cracks, and inclusions, with highprecision and in real-time. Unlike many competing methods, ultrasonic testing works on most types of materials. Ultrasonic testing has been applied forinspection purposes for a long time. Now with emerging manufacturing methods, there is a need for evaluation techniques to keep up with this development.New data processing algorithms open up possibilities of extracting more information from the acquired signal.

The thesis provides a review of UT’s capabilities in detecting and classifyingdefects within AM components, with a particular emphasis on the subtletiesintroduced by the layer-by-layer construction method inherent to AM technologies. The work advances development and validation of simulation modelsaimed at predicting the ultrasonic response from manufactured defects. Thesemodels are crucial for understanding the interaction between ultrasound wavesand material anomalies, offering insights into the potential for enhanced defectdetection strategies.

The research also explores the practical case of integrating UT into the quality assurance processes by relying on mathematical simulation rather than experimental data. The findings suggest avenues for the refinement of creation of inspection procedure, including the the use of meta-models to cheaply acquire worst-case scenario defects, to better accommodate the specificities of AM materials.

Abstract [sv]

Den här avhandlingen handlar om ultraljudsprovning av additivt tillverkade metalkomponenter. Ultraljud är en av flera metoder som används för att detektera defekter i komponenter utan att förstöra komponenten i processen. Samlingsnamnet för dessa metoder är oförstörande provning. Oförstörande provning är en viktig pusselbit i samhällets säkerhet då det möjliggör identifiering och utvärdering av potentiella defekter i material, vilket förebygger olyckor och strukturella fel. Vidare är det en viktig del inom hållbar utveckling genom att maximera nyttjandet av komponenter då dessa inte behöver ersättas med ett överdrivet försiktigt underhållsintervall. Ultraljudsprovning fungerar genomatt ultraljud introduceras in i en komponent, varefter en givare registrerar ekon som uppstår när ljudvågorna interagerar med eventuella defekter. Detta möjliggör både lokalisering och storleksbedömning av defekter, t.ex. sprickor, bindfel eller porer.

Resultaten av den här avhandlingen syftar till att ge förutsättningar för att förbättra tolkningen av dessa signaler, dels genom att experimentellt validera simuleringsmodeller, samt tillämpning av dessa modeller för att utveckla en metamodell för att prediktera amplitudsvaret från en mängd defekter inom en viss parameterrymd. Med verktyg som detta kan billigare inspektionsprocedurer möjliggöras genom att man till större del kan förlita sig på simulering av signaler snarare än att skaffa stort underlag med experimentell data.

Place, publisher, year, edition, pages
Trollhättan: University West, 2024. p. 34
Series
Licentiate Thesis: University West ; 47
Keywords
Non-Destructive Testing (NDT), Super alloys, Microstructure, Ultrasonic Testing (UT), Productivity Enhancement
National Category
Manufacturing, Surface and Joining Technology
Research subject
Production Technology
Identifiers
urn:nbn:se:hv:diva-21424 (URN)978-91-89325-77-7 (ISBN)978-91-89325-78-4 (ISBN)
Presentation
2024-03-12, J113, Gustava Melins gata, Trollhättan, 10:00 (English)
Opponent
Supervisors
Note

Paper A, B and C are not included in the eletronic version. Paper C is under submission.

Available from: 2024-04-12 Created: 2024-03-27 Last updated: 2024-03-26

Open Access in DiVA

No full text in DiVA

Authority records

Sahl, MikaelWirdelius, Håkan

Search in DiVA

By author/editor
Sahl, MikaelWirdelius, Håkan
By organisation
Division of Subtractive and Additive Manufacturing
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf