The idea of adding material only where needed to manufacturesolid metallic high-performing components is intriguing andone of the main reasons for the great interest in additivemanufacturing (AM) around the world. Especially whensustainability comes into play, as in recent times more thanever, AM technology is most appropriate since it enables almostfull material utilization with minimal waste. From an economicstandpoint, this becomes particularly advantageous for moreexpensive materials such as superalloys and titanium alloys.However, the route of going from a CAD drawing of a part to anadditively manufactured final component that is qualified and inserial production involves numerous challenges. The intentionof this book is to shed light on and explain some of theassociated challenges beginning with the importance of thestarting material and how it is manufactured, i.e., wire orpowder, continuing into description of the conventional andPederson, R., Andersson, J., & Joshi, S. (2023). Additive manufacturing of high-performance metallic materials. Elsevier.Created from vast-ebooks on 2024-01-08 16:09:20. Copyright © 2023. Elsevier. All rights reserved.most commonly used AM processes, followed by postbuildtreatments and nondestructive evaluations, to eventuallyproduce the final part with mechanical performance consistentwith the application requirements. In the end, selected realindustry examples of AM parts for actual applications will bepresented