This thesis introduces a Human-Machine Interface (HMI) developed to enhance safety and efficiency in Configurable Multiagent Systems (CMAS) operating in Plug-and-Produce robot cells. The HMI addresses challenges related to flexible CMAS configurations, specifically addressing collision detection difficulties. Through runtime Configuration and coding of CMAS, the HMI identifies safer robot paths to prevent collisions during real-world CMAS operations. The experimental phase involves a virtual environment, demonstrating the HMI's effectiveness in collision prevention during CMAS operations. This research represents a notable advancement in collision-free motion planning for flexible CMAS configurations, offering a valuable tool for operators to operate CMAS in dynamic production settings, fostering safer and more efficient robotic automation across industries